iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s11433-021-1726-0
Structure and magnetic properties of the S = 3/2 zigzag spin chain antiferromagnet BaCoTe2O7 | Science China Physics, Mechanics & Astronomy Skip to main content
Log in

Structure and magnetic properties of the S = 3/2 zigzag spin chain antiferromagnet BaCoTe2O7

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We report a study of the structure and magnetic properties of the S = 3/2 zigzag spin chain compound BaCoTe2O7. Neutron diffraction measurements show that it crystallizes in the noncentrosymmetric space group Ama2 with a canted ↑↑↓↓ spin structure along the quasi-one-dimensional zigzag chain and a moment size of 1.89(2) µB at 2 K. Both magnetic susceptibility and specific heat measurements yield an antiferromagnetic phase transition at TN = 6.2 K. A negative Curie-Weiss temperature, ΘCW = −74.7(2) K, and an empirical frustration parameter, f = ∣ΘCW∣/TN ≈ 12, are obtained by fitting the magnetic susceptibility, indicating antiferromagnetic interactions and strong magnetic frustration. From ultraviolet-visible absorption spectroscopy and first-principles calculations, an indirect band gap of 2.68(2) eV is determined. We propose that the canted zigzag spin chain of BaCoTe2O7 may produce a change in the polarization via the exchange-striction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Ising, Z. Physik 31, 253 (1925).

    Article  ADS  Google Scholar 

  2. W. Heisenberg, Z. Physik 49, 619 (1928).

    Article  ADS  Google Scholar 

  3. H. Bethe, Z. Physik 71, 205 (1931).

    Article  ADS  Google Scholar 

  4. I. Affleck, J. Phys.-Condens. Matter 1, 3047 (1989).

    Article  ADS  Google Scholar 

  5. H.-J. Mikeska, and A. K. Kolezhuk, Lect. Notes Phys. 645, 1 (2004).

    Article  ADS  Google Scholar 

  6. N. D. Mermin, and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).

    Article  ADS  Google Scholar 

  7. Z. He, T. Taniyama, T. Kyomen, and M. Itoh, Phys. Rev. B 72, 172403 (2005).

    Article  ADS  Google Scholar 

  8. B. Grenier, V. Simonet, B. Canals, P. Lejay, M. Klanjšek, M. Horvatić, and C. Berthier, Phys. Rev. B 92, 134416 (2015), arXiv: 1508.01815.

    Article  ADS  Google Scholar 

  9. C. Heid, H. Weitzel, P. Burlet, M. Bonnet, W. Gonschorek, T. Vogt, J. Norwig, and H. Fuess, J. Magn. Magn. Mater. 151, 123 (1995).

    Article  ADS  Google Scholar 

  10. C. Heid, H. Weitzel, P. Burlet, M. Winkelmann, H. Ehrenberg, and H. Fuess, Phys. B-Condens. Matter 234–236, 574 (1997).

    Article  ADS  Google Scholar 

  11. M. Lenertz, J. Alaria, D. Stoeffler, S. Colis, and A. Dinia, J. Phys. Chem. C 115, 17190(2011).

    Article  Google Scholar 

  12. C. B. Liu, Z. Z. He, S. L. Wang, M. Yang, Y. Liu, Y. J. Liu, R. Chen, H. P. Zhu, C. Dong, J. Z. Ke, Z. W. Ouyang, Z. C. Xia, and J. F. Wang, J. Phys.-Condens. Matter 31, 375802 (2019).

    Article  ADS  Google Scholar 

  13. A. Maignan, C. Michel, A. C. Masset, C. Martin, and B. Raveau, Eur. Phys. J. B 15, 657 (2000).

    Article  ADS  Google Scholar 

  14. S. Agrestini, L. C. Chapon, A. Daoud-Aladine, J. Schefer, A. Gukasov, C. Mazzoli, M. R. Lees, and O. A. Petrenko, Phys. Rev. Lett. 101, 097207 (2008), arXiv: 0807.4489.

    Article  ADS  Google Scholar 

  15. J. Yeon, S. H. Kim, M. A. Hayward, and P. S. Halasyamani, Inorg. Chem. 50, 8663 (2011).

    Article  Google Scholar 

  16. J. Yeon, S. H. Kim, S. D. Nguyen, H. Lee, and P. S. Halasyamani, Inorg. Chem. 51, 2662 (2012).

    Article  Google Scholar 

  17. A. A. Belik, M. Azuma, and M. Takano, Inorg. Chem. 44, 7523 (2005).

    Article  Google Scholar 

  18. R. David, H. Kabbour, S. Colis, A. Pautrat, E. Suard, and O. Mentré, J. Phys. Chem. C 117, 18190 (2013).

    Article  Google Scholar 

  19. J. Chen, L. Kang, H. Lu, P. Luo, F. Wang, and L. He, Phys. B 551, 370 (2018).

    Article  ADS  Google Scholar 

  20. H. M. Rietveld, J. Appl. Cryst. 2, 65 (1969).

    Article  Google Scholar 

  21. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  22. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  23. G. Kresse, and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  ADS  Google Scholar 

  24. G. Kresse, and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  25. H. J. Monkhorst, and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  26. E. F. Bertaut, J. Appl. Phys. Suppl. 33, 1138 (1962).

    Article  ADS  Google Scholar 

  27. E. F. Bertaut, J. Phys. Colloques 32, C1–462 (1971).

    Article  Google Scholar 

  28. L. J. de Jongh, and A. R. Miedema, Adv. Phys. 23, 1 (1974).

    Article  ADS  Google Scholar 

  29. J. Q. Yan, S. Okamoto, Y. Wu, Q. Zheng, H. D. Zhou, H. B. Cao, and M. A. McGuire, Phys. Rev. Mater. 3, 074405 (2019), arXiv: 1905.09365.

    Article  Google Scholar 

  30. R. Zhong, T. Gao, N. P. Ong, and R. J. Cava, Sci. Adv. 6, eaay6953 (2020), arXiv: 1910.08577.

    Article  ADS  Google Scholar 

  31. R. L. Carlin, Magnetochemistry (Springer-Verlag, Berlin, 1986).

    Book  Google Scholar 

  32. M. Soda, T. Hong, M. Avdeev, H. Yoshizawa, T. Masuda, and H. Kawano-Furukawa, Phys. Rev. B 100, 144410 (2019).

    Article  ADS  Google Scholar 

  33. L. Ortega-San Martin, J. P. Chapman, L. Lezama, J. Sánchez Marcos, J. Rodríguez-Fernández, M. I. Arriortua, and T. Rojo, Eur. J. Inorg. Chem. 1362 (2006).

  34. L. Li, N. Narayanan, S. Jin, J. Yu, Z. Liu, H. Sun, C. W. Wang, V. K. Peterson, Y. Liu, S. Danilkin, D. X. Yao, D. Yu, and M. Wang, Phys. Rev. B 102, 094413 (2020), arXiv: 2006.03356.

    Article  ADS  Google Scholar 

  35. A. A. Aczel, L. Li, V. O. Garlea, J. Q. Yan, F. Weickert, M. Jaime, B. Maiorov, R. Movshovich, L. Civale, V. Keppens, and D. Mandrus, Phys. Rev. B 90, 134403 (2014), arXiv: 1407.4098.

    Article  ADS  Google Scholar 

  36. B. Lorenz, Y. Q. Wang, and C. W. Chu, Phys. Rev. B 76, 104405 (2007), arXiv: cond-mat/0608195.

    Article  ADS  Google Scholar 

  37. Y. J. Choi, H. T. Yi, S. Lee, Q. Huang, V. Kiryukhin, and S. W. Cheong, Phys. Rev. Lett. 100, 047601 (2008).

    Article  ADS  Google Scholar 

  38. R. Chen, J. F. Wang, Z. W. Ouyang, Z. Z. He, S. M. Wang, L. Lin, J. M. Liu, C. L. Lu, Y. Liu, C. Dong, C. B. Liu, Z. C. Xia, A. Matsuo, Y. Kohama, and K. Kindo, Phys. Rev. B 98, 184404 (2018).

    Article  ADS  Google Scholar 

  39. W. H. Ji, L. Yin, W. M. Zhu, C. M. N. Kumar, C. Li, H. F. Li, W. T. Jin, S. Nandi, X. Sun, Y. Su, T. Brückel, Y. Lee, B. N. Harmon, L. Ke, Z. W. Ouyang, and Y. Xiao, Phys. Rev. B 100, 134420 (2019), arXiv: 1905.06282.

    Article  ADS  Google Scholar 

  40. S. Dong, J. M. Liu, and E. Dagotto, Phys. Rev. Lett. 113, 187204 (2014), arXiv: 1410.2682.

    Article  ADS  Google Scholar 

  41. K. Du, L. Guo, J. Peng, X. Chen, Z. N. Zhou, Y. Zhang, T. Zheng, Y. P. Liang, J. P. Lu, Z. H. Ni, S. S. Wang, G. Van Tendeloo, Z. Zhang, S. Dong, and H. Tian, npj Quantum Mater. 5, 49 (2020), arXiv: 2007.12828.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Wang.

Additional information

Meng Wang was supported by the National Natural Science Foundation of China (Grant No. 11904414), and the National Key Research and Development Program of China (Grant No. 2019YFA0705702). Dao-Xin Yao was supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0306001, and 2017YFA0206203), the National Natural Science Foundation of China (Grant No. 11974432), the Guangdong Basic and Applied Basic Research Fund (Grant No. 2019A1515011337), and the Leading Talent Program of Guangdong Special Projects. We thank Hanjie Guo for the Laue measurements.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Hu, X., Liu, Z. et al. Structure and magnetic properties of the S = 3/2 zigzag spin chain antiferromagnet BaCoTe2O7. Sci. China Phys. Mech. Astron. 64, 287412 (2021). https://doi.org/10.1007/s11433-021-1726-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1726-0

Keywords

Navigation