iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s11424-020-9270-1
Tool Orientation Optimization and Path Planning for 5-Axis Machining | Journal of Systems Science and Complexity Skip to main content
Log in

Tool Orientation Optimization and Path Planning for 5-Axis Machining

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

Tool path generation is a fundamental problem in 5-axis CNC machining, which consists of tool orientation planning and cutter-contact (CC) point planning. The planning strategy highly depends on the type of tool cutters. For ball-end cutters, the tool orientation and CC point location can be planned separately; while for flat end cutters, the two are highly dependent on each other. This paper generates a smooth tool path of workpiece surfaces for flat end mills from two stages: Computing smooth tool orientations on the surface without gouging and collisions and then designing the CC point path. By solving the tool posture optimization problem the authors achieve both the path smoothness and the machining efficiency. Experimental results are provided to show the effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Loney G C and Ozsoy T M, NC machining of free form surfaces, Computer-Aided Design, 1987, 19(2): 85–90.

    Article  Google Scholar 

  2. Elber G and Cohen E, Toolpath generation for freeform surface models, Computer-Aided Design, 1994, 26(6): 490–496.

    Article  Google Scholar 

  3. Han Z L and Yang D C H, Iso-phote based tool-path generation for machining free-form surfaces, Journal of Manufacturing Science and Engineering, ASME Transactions, 1999, 121(4): 656–664.

    Article  Google Scholar 

  4. Ding S, Mannan M A, Poo A N, et al., Adaptive iso-planar tool path generation for machining of free-form surfaces, Computer-Aided Design, 2003, 35(2): 141–153.

    Article  Google Scholar 

  5. Suresh K and Yang D C H, Constant scallop height machining of free form surfaces, Journal of Engineering for Industry, ASME Transactions, 1994, 116(2): 253–259.

    Article  Google Scholar 

  6. Lin R S and Koren Y, Efficient tool-path planning for machining free-form surfaces, Journal of Engineering for Industry, ASME Transactions, 1996, 118(1): 20–28.

    Article  Google Scholar 

  7. Zou Q and Zhao J B, Iso-parametric tool-path planning for point clouds, Computer-Aided Design, 2013, 45(11): 1459–1468.

    Article  Google Scholar 

  8. Lee Y S, Non-isoparametric tool path planning by machining strip evaluation for 5-axis sculptured surface machining, Computer-Aided Design, 1998, 30(7): 559–570.

    Article  Google Scholar 

  9. Hu P C, Chen L F, and Tang K, Efficiency-optimal iso-planar tool path generation for five-axis finishing machining of freeform surfaces, Computer-Aided Design, 2017, 83: 33–50.

    Article  Google Scholar 

  10. Cheng M, A new iso-scallop height tool path planning method in threedimensional space, Computer Aided Drafting, Design and Manufacturing, 2012, 22(3): 35–42.

    Google Scholar 

  11. Guo J X, Zhang Q, Gao X S, et al., Time optimal feedrate generation with confined tracking error based on linear programming, Journal of Systems Science & Complexity, 2013, 28(1): 80–95.

    Article  MathSciNet  Google Scholar 

  12. Zou Q, Zhang J Y, Deng B L, et al., Iso-level tool path planning for free-form surfaces, Computer-Aided Design, 2014, 53: 117–125

    Article  MathSciNet  Google Scholar 

  13. Zhang K and Tang K, Optimal five-axis tool path generation algorithm based on double scalar fields for freeform surfaces, Int. J. Adv. Manuf. Technol., 2016, 83: 1503–1514.

    Article  Google Scholar 

  14. Liu X, Li Y G, Ma S B, et al., A tool path generation method for freeform surface machining by introducing the tensor property of machining strip width, Computer-Aided Design, 2015, 66: 1–13.

    Article  Google Scholar 

  15. Kumazawa G H, Feng H Y, and Fard M J B, Preferred feed direction field: A new tool path generation method for efficient sculptured surface machining, Computer-Aided Design, 2015, 67–68: 1–12.

    Article  Google Scholar 

  16. Wang Y, Yan C Y, Yang J Z, et al., Tool path generation algorithm based on covariant field theory and cost functional optimization and its applications in blade machining, Int. J. Adv. Manuf. Technol., 2016, 90(1–4): 927–943.

    Google Scholar 

  17. Chiou C J and Lee Y S, A machining potential field approach to tool path generation for multi-axis sculptured surface machining, Computer-Aided Design, 2002, 34: 357–371.

    Article  Google Scholar 

  18. Lozano-Perez T and Wesley M A, An algorithm for planning collision-free paths among polyhedral obstacles, Communications of the ACM, 1979, 22(10): 560–570.

    Article  Google Scholar 

  19. Lozano-Perez T, Spatial planning: A configuration space approach, IEEE Transactions on Computers, 1983, 100(2): 108–120.

    Article  MathSciNet  Google Scholar 

  20. Bajaj C and Kim M S, Generation of configuration space obstacles: The case of moving algebraic curves, Algorithmica, 4 (2): 157–172.

  21. Morishige K, Kase Y, and Takeuchi Y, Collision-free tool path generation using 2-dimensional C-space for 5-axis control machining, Int. J. Adv. Manuf. Technol., 1997, 13: 393–400.

    Article  Google Scholar 

  22. Chen L, Xu K, and Tang K, Collision-free tool orientation optimization in five-axis machining of bladed disk, Journal of Computational Design and Engineering, 2015, 2: 197–205.

    Article  Google Scholar 

  23. Lacharnay V, Lavernhe S, Tournier C, et al., A physically-based model for global collision avoidance in 5-axis point milling, Computer-Aided Design, 2015, 64: 1–8.

    Article  Google Scholar 

  24. Mi Z P, Yuan C M, Ma X H, et al., Tool orientation optimization for 5-axis machining with C-space method, Int. J. Adv. Manuf. Technol., 2017, 88(5–8): 1243–1255.

    Article  Google Scholar 

  25. Jun C S, Cha K, and Lee Y S, Optimizing tool orientations for 5-axis machining by configuration-space search method, Computer-Aided Design, 2003, 35(6): 549–566.

    Article  Google Scholar 

  26. Lu J, Cheatham R, Jensen C G, et al., A three-dimensional configuration-space method for 5-axis tessellated surface machining, Int. J. Comput. Integr. Manuf., 2008, 21(5): 550–568.

    Article  Google Scholar 

  27. Lin Z W, Fu J Z, Shen H Y, et al., Non-singular tool path planning by translating tool orientations in C-space, Int. J. Adv. Manuf. Technol., 2004, 71(9–12): 1835–1848.

    Google Scholar 

  28. Wang N and Tang K, Automatic generation of gouge-free and angular-velocity-compliant five-axis toolpath, Computer-Aided Design, 2007, 39(10): 841–852.

    Article  Google Scholar 

  29. Castagnetti C, Duc E, and Ray P, The domain of admissible orientation concept: A new method for five-axis tool path optimisation, Computer-Aided Design, 2008, 40: 938–950.

    Article  Google Scholar 

  30. Kim Y J, Elber G, Bartoň M, et al., Precise gouging-free tool orientations for 5-axis CNC machining, Computer-Aided Design, 2015, 58: 220–229.

    Article  Google Scholar 

  31. Li X Y, Lee C H, Hu P C, et al., Cutter partition-based tool orientation optimization for gouge avoidance in five-axis machining, Int. J. Adv. Manuf. Technol., 2018, 95(5–8): 1–17.

    Google Scholar 

  32. Piegl L and Tiller W, The NURBS Book, 2nd Springer Berlin Heidelberg, 1997.

    Book  Google Scholar 

  33. Radzevich S P, Kinematic Geometry of Surface Machining, CRC Press, Boca Raton, 2008.

    MATH  Google Scholar 

  34. Giri V, Bezbaruah D, Bubna P, et al., Selection of master cutter paths in sculptured surface machining by employing curvature principle, International Journal of Machine Tools & Manufacture, 2005, 45(10): 1202–1209.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyong Shen.

Additional information

This paper was supported by the National Natural Science Foundation of China under Grant No. 11688101, 61872332, Beijing National Natural Science Foundation under Grant No. Z190004, National Center for Mathematics and Interdisciplinary Sciences, and Youth Innovation Promotion Association of the Chinese Academy of Sciences.

This paper was recommended for publication by Editor-in-Chief GAO Xiao-Shan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, C., Mi, Z., Jia, X. et al. Tool Orientation Optimization and Path Planning for 5-Axis Machining. J Syst Sci Complex 34, 83–106 (2021). https://doi.org/10.1007/s11424-020-9270-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-020-9270-1

Keywords

Navigation