iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s11390-017-1797-9
Effective Query Grouping Strategy in Clouds | Journal of Computer Science and Technology Skip to main content
Log in

Effective Query Grouping Strategy in Clouds

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

As the demand for the development of cloud computing grows, more and more organizations have outsourced their data and query services to the cloud for cost-saving and flexibility. Suppose an organization that has a great number of users querying the cloud-deployed multiple proxy servers to achieve cost efficiency and load balancing. Given n queries, each of which is expressed as several keywords, and k proxy servers, the problem to be solved is how to classify n queries into k groups, in order to minimize the difference between each group and the number of distinct keywords in all groups. Since this problem is NP-hard, it is solved in mathematic and heuristic ways. Mathematic grouping uses a local optimization method, and heuristic grouping is based on k-means. Specifically, two extensions are provided: the first one focuses on robustness, i.e., each user obtains search results even if some proxy servers fail; the second one focuses on benefit, i.e., each user can retrieve as many files as possible that may be of interest without increasing the sum. Extensive evaluations have been conducted on both a synthetic dataset and real query traces to verify the effectiveness of our strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Mell P M, Grance T. The NIST definition of cloud computing. Communications of the ACM, 2010, 53(6): Article No. 50.

  2. Fu Z J, Shu J G, Sun X M, Zhang D X. Semantic keyword search based on trie over encrypted cloud data. In Proc. the 2nd Int. Workshop on Security in Cloud Computing, June 2014, pp.59-62.

  3. Fu Z J, Ren K, Shu J G, Sun X M, Huang F X. Enabling personalized search over encrypted outsourced data with efficiency improvement. IEEE Trans. Parallel and Distributed Systems, 2016, 27(9): 2546-2559.

    Article  Google Scholar 

  4. Liu Q, Tan C C, Wu J, Wang G J. Cooperative private searching in clouds. Journal of Parallel and Distributed Computing, 2012, 72(8): 1019-1031.

    Article  MATH  Google Scholar 

  5. Liu Q, Tan C C, Wu J, Wang G J. Towards differential query services in costefficient clouds. IEEE Trans. Parallel and Distributed Systems, 2014, 25(6): 1648-1658.

    Article  Google Scholar 

  6. Sweeney L. k-anonymity: A model for protecting privacy. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 2002, 10(5): 557-570.

    Article  MathSciNet  MATH  Google Scholar 

  7. Niu B, Li Q H, Zhu X Y, Cao G H, Li H. Achieving k-anonymity in privacy-aware location-based services. In Proc. IEEE INFOCOM, April 27-May 2, 2014, pp.754-762.

  8. Yi X, Paulet R, Bertino E, Varadharajan V. Practical approximate k nearest neighbor queries with location and query privacy. IEEE Trans. Knowledge and Data Engineering, 2016, 28(6): 1546-1559.

    Article  Google Scholar 

  9. Kanungo T, Mount D M, Netanyahu N S, Piatko C D, Silverman R, Wu A Y. An efficient k-means clustering algorithm: Analysis and implementation. IEEE Trans. Pattern Analysis and Machine Intelligence, 2002, 24(7): 881-892.

  10. Guo Y H. Active instance sampling via matrix partition. In Proc. NIPS, December 2010, pp.802-810.

  11. Hamerly G. Making k-means even faster. In Proc. SIAM Int. Conf. Data Mining, April 2010, pp.130-140.

  12. Pass G, Chowdhury A, Torgeson C. A picture of search. In Proc. the 1st Int. Conf. Scalable Information Systems, May 30-June 1, 2006.

  13. Gates A F, Natkovich O, Chopra S, Kamath P, Narayanamurthy S M, Olston C, Reed B, Srinivasan S, Srivastava U. Building a high-level dataflow system on top of Map-Reduce: The pig experience. In Proc. VLDB Endowment, August 2009, pp.1414-1425.

  14. Nykiel T, Potamias M, Mishra C, Kollios G, Koudas N. MRShare: Sharing across multiple queries in MapReduce. In Proc. VLDB Endowment, September 2010, pp.494-505.

  15. Herodotou H, Lim H, Luo G, Borisov N, Dong L, Cetin F B, Babu S. Starfish: A self-tuning system for big data analytics. In Proc. Biennial Conf. Innovative Data Systems Research, January 2011, pp.261-272.

  16. Lei C, Zhuang Z F, Rundensteiner E A, Eltabakh M. Shared execution of recurring workloads in MapReduce. In Proc. VLDB Endowment, September 2015, pp.714-725.

  17. Aggarwal C C, Zhai C X. A survey of text clustering algorithms. In Mining Text Data, Aggarwal C C, Zhai C X (eds.), Springer, 2012, pp.77-128.

  18. Fahad A, Alshatri N, Tari Z, Alamri A, Khalil I, Zomaya A Y, Foufou S, Bouras A. A survey of clustering algorithms for big data: Taxonomy and empirical analysis. IEEE Trans. Emerging Topics in Computing, 2014, 2(3): 267-279.

    Article  Google Scholar 

  19. Vu T T, Willis A, Song D W. Modelling time-aware search tasks for search personalisation. In Proc. the 24th Int. Conf. World Wide Web, May 2015, pp.131-132.

  20. Zhao Y, Karypis G. Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning, 2004, 55(3): 311-331.

    Article  MATH  Google Scholar 

  21. Zhang T, Ramakrishnan R, Livny M. BIRCH: An efficient data clustering method for very large databases. ACM SIGMOD Record, 1996, 25(2): 103-114.

    Article  Google Scholar 

  22. Guha S, Rastogi R, Shim K. CURE: An efficient clustering algorithm for large databases. Information Systems, 2001, 26(1): 35-58.

    Article  MATH  Google Scholar 

  23. Karypis G, Han E H, Kumar V. Chameleon: Hierarchical clustering using dynamic modeling. Computer, 1999, 32(8): 68-75.

    Article  Google Scholar 

  24. Guha S, Rastogi R, Shim K. ROCK: A robust clustering algorithm for categorical attributes. In Proc. the 15th Int. Conf. Data Engineering, March 1999, pp.512-521.

  25. Schütz H, Silverstein C. Projections for efficient document clustering. ACM SIGIR Forum, 1997, 31(SI): 74-81.

  26. Cutting D R, Karger D R, Pedersen J O, Tukey J W. Scatter/Gather: A cluster-based approach to browsing large document collections. In Proc. the 15th Annual Int. ACM SIGIR Conf. Research and Development in Information Retrieval, June 1992, pp.318-329.

  27. Sarle W S. Finding groups in data: An introduction to cluster analysis. Journal of the American Statistical Association, 1991, 86(415): 830-833.

    Article  Google Scholar 

  28. Ng R J, Han J W. Efficient and effective clustering methods for spatial data mining. In Proc. the 20th Int. Conf. Very Large Data Bases, September 1994, pp.144-155.

  29. Ng R T, Han J W. CLARANS: A method for clustering objects for spatial data mining. IEEE Trans. Knowledge and Data Engineering, 2002, 14(5): 1003-1016.

    Article  Google Scholar 

  30. Wei C P, Lee Y H, Hsu C M. Empirical comparison of fast clustering algorithms for large data sets. In Proc. the 33rd Annual Hawaii Int. Conf. System Sciences, January 2000.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guojun Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 339 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Guo, Y., Wu, J. et al. Effective Query Grouping Strategy in Clouds. J. Comput. Sci. Technol. 32, 1231–1249 (2017). https://doi.org/10.1007/s11390-017-1797-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-017-1797-9

Keywords

Navigation