Abstract
Previous methods of multi-view clustering focused on the improvement of clustering effectiveness by detecting common information of all views and individual information for every view, but they ignore the following issues, i.e., the initialization sensitivity, the cluster number determination, and the influence of outliers. However, either single-view clustering or multi-view clustering often suffers from above issues. In this paper, we propose a robust self-tuning multi-view clustering to introduce a sum-of-norm loss function to explore the issue of initialization sensitivity, design a sum-of-norm regularization to automatically determine the cluster number, and employ robust statistics techniques to reduce influence of outliers. Furthermore, we propose an effective alternating optimization method to solve the resulting objective function and then theoretically prove its convergence. Experimental results on both synthetic and real data sets demonstrated that our proposed multi-view clustering method outperformed the state-of-the-art clustering methods, in terms of four clustering evaluation metrics.
Similar content being viewed by others
Notes
In this paper, we changed the original feature matrix Xv to \(\hat {\mathbf {X}}^{v}\), but still consider the issue of outlier influence reduction based on two reasons: 1) the samples in \(\hat {\mathbf {X}}^{v}\) transferred from the outliers in Xv still influence the construction of clustering models, and 2) the samples in \(\hat {\mathbf {X}}^{v}\) still have diversity, i.e., different samples have different importance for the clustering model.
References
Arthur, D., Vassilvitskii, S.: The advantages of careful seeding k-means+ +. In: SODA, pages 1027–1035 (2007)
Bahmani, B., Moseley, B., Vattani, A., Kumar, R., Vassilvitskii, S.: Scalable k-means+ +. VLDB 5(7), 622–633 (2012)
Black, M.J., Rangarajan, A.: On the unification of line processes, outlier rejection, and robust statistics with applications in early vision. Int. J. Comput. Vis. 19(1), 57–91 (1996)
Branco, D.P.P., Carvalho, F.D.A.T.: Fuzzy clustering of multi-view relational data with pairwise constraints. In: IEEE International Conference on Fuzzy Systems, pp. 1–6 (2017)
Brito, M.R., Chavez, E.L., Quiroz, A.J., Yukich, J.E.: Connectivity of the mutual k-nearest-neighbor graph in clustering and outlier detection. Stat. Probabl. Lett. 35(1), 33–42 (1997)
Cao, X., Zhang, C., Fu, H., Si, L., Zhang, H.: Diversity-induced multi-view subspace clustering. In: CVPR, pp. 586–594 (2015)
Emre Celebi, M., Kingravi, H.A, Vela, P.A: A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Syst. Appl. 40(1), 200–210 (2013)
Charbonnier, P., Blanc-Fėraud, L., Aubert, G., Barlaud, M.: Deterministic edge-preserving regularization in computed imaging. IEEE Transations Image Processing 6(2), 298–311 (1997)
Chi, E.C, Lange, K.: Splitting methods for convex clustering. J. Comput. Graph. Stat. 24(4), 994–1013 (2015)
Cleuziou, G., Exbrayat, M., Martin, L., Sublemontier, J.-H.: Cofkm: A centralized method for multiple-view clustering. In: ICDM, pages 752–757 (2009)
Comaniciu, D., shift, Peter Meer.: Mean A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)
Ding, C., He, X., Simon, H.D: On the equivalence of nonnegative matrix factorization and spectral clustering. In: SDM, pp. 606–610 (2005)
Ding, Z., Shao, M., Fu, Y.: Robust multi-view representation: A unified perspective from multi-view learning to domain adaption. In: IJCAI, pp. 5434–5440 (2018)
Elhamifar, E., Vidal, R.: Sparse subspace clustering: Algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)
Fahad, A., Alshatri, N., Tari, Z., Alamri, A.: A survey of clustering algorithms for big data Taxonomy and empirical analysis. IEEE Trans. Emerg. Topics Comput. 2(3), 267–279 (2014)
Fränti, P., Sieranoja, S.: How much can k-means be improved by using better initialization and repeats? Pattern Recogn. 93, 95–112 (2019)
Frey, B.J, Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)
Gan, J., Peng, Z., Zhu, X., Hu, R., Ma, J., Wu, G.: Brain functional connectivity analysis based on multi-graph fusion. Med. Image Anal. https://doi.org/10.1016/j.media.2021.102057 (2021)
He, R., Zheng, Wei-Shi, Tan, T., Sun, Z.: Half-quadratic-based iterative minimization for robust sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 261–275 (2014)
Hocking, T.D., Joulin, A., Bach, F., Vert, J.-P.: Clusterpath an algorithm for clustering using convex fusion penalties. In: ICML, p. 1 (2011)
Hu, R., Peng, Z., Zhu, X., Gan, J., Zhu, Y., Ma, J., Wu, G.: Multi-band brain network analysis for functional neuroimaging biomarker identification. IEEE Trans. Med. Imaging. https://doi.org/10.1109/TMI.2021.3099641 (2021)
Hu, R., Zhu, X., Zhu, Y., Gan, J.: Robust svm with adaptive graph learning. World Wide Web 23, 1945–1968 (2020)
Yizhang, J., Fu-Lai, C., Shitong, W., Zhaohong, D., Jun, W., Pengjiang, Q.: Collaborative fuzzy clustering from multiple weighted views. IEEE Trans. Cybern. 45(4), 688–701 (2015)
Lakshmi, M.A, Daniel, G.V., Srinivasa Rao, D.: Initial centroids for k-means using nearest neighbors and feature means. In: Soft Computing and Signal Processing, pp. 27–34. Springer (2019)
Long, B., Yu, P.S., Zhang, Z.: A general model for multiple view unsupervised learning. In: SDM, pp. 822–833 (2008)
Nie, F., Cai, G., Li, X.: Multi-view clustering and semi-supervised classification with adaptive neighbours. In: AAAI, pp. 2408–2414 (2017)
Nikolova, M., Chan, R.H.: The equivalence of half-quadratic minimization and the gradient linearization iteration. IEEE Trans. Image Process. 16(6), 1623–7 (2007)
Nikolova, M., Ng, M.K.: Analysis of half-quadratic minimization methods for signal and image recovery. SIAM J. Sci. Comput. 27(3), 937–966 (2005)
Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science 344(6191), 1492–1496 (2014)
Shah, S.A., Koltun, V.: Robust continuous clustering. Proc. Natl. Acad. Sci. 114(37), 9814–9819 (2017)
Shen, H.T., Zhu, Y., Zheng, W., Zhu, X.: Half-quadratic minimization for unsupervised feature selection on incomplete data. IEEE Trans. Neural Netw. Learn. Syst. https://doi.org/10.1109/TNNLS.2020.3009632 (2020)
Strehl, A., Ghosh, J.: Cluster ensembles—a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3(Dec), 583–617 (2002)
Tao, Z., Liu, H., Li, S., Ding, Z., Fu, Y.: From ensemble clustering to multi-view clustering. In: IJCAI (2017)
Wang, B., Yang, Y., Xu, X., Hanjalic, A., Shen, H.T.: Adversarial cross-modal retrieval. In: ACM MM, pp. 154–162 (2017)
Xia, R., Pan, Y., Du, L., Yin, J.: Robust multi-view spectral clustering via low-rank and sparse decomposition. In: AAAI (2014)
Xu, C., Tao, D., Xu, C.: Multi-view self-paced learning for clustering. In: IJCAI, pp. 3974–3980 (2015)
Zhe, X., Guorong, L., Shuhui, W., Jun, H., Weigang, Z., Qingming, H.: Beyond global fusion: A group-aware fusion approach for multi-view image clustering. Inf. Sci. (2019)
Zhan, K., Nie, F., Wang, J., Yi, Y.: Multiview consensus graph clustering. IEEE Trans. Image Process. 28(3), 1261–1270 (2019)
Zhang, Z., Li, L., Shen, F., Shen, H.T., Shao, L.: Binary multi-view clustering. IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1774–1782 (2018)
Zheng, Q., Zhu, J., Li, Z., Pang, S., Wang, J.: Feature concatenation multi-view subspace clustering. arXiv:1901.10657 (2019)
Zhou, H., Liu, Y.: Accurate integration of multi-view range images using k-means clustering. Pattern Recogn. 41(1), 152–175 (2008)
Zhu, L., Huang, Z., Li, Z., Xie, L., Shen, H.T.: Exploring auxiliary context: Discrete semantic transfer hashing for scalable image retrieval. IEEE Trans. Neural Netw. Learn. Syst. 29(11), 5264–5276 (2018)
Zhu, M., Martinez, A.M: Subclass discriminant analysis. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1274–1286 (2006)
Zhu, X., Gan, J., Guangquan, L u, Li, J., Zhang, S.: Spectral clustering via half-quadratic optimization. World Wide Web 23, 1969–1988 (2020)
Zhu, X., Li, H., Shen, H.T., Zhang, Z., Ji, Y., Fan, Y.: Fusing functional connectivity with network nodal information for sparse network pattern learning of functional brain networks. Inform. Fusion 75, 131–139 (2021)
Xiaofeng, Z., Bin, S., Feng, S., Yanbo, C., Rongyao, H., Jiangzhang, G., Wenhai, Z., Man, L., Liye, W., Yaozong, G., et al.: Joint prediction and time estimation of covid-19 developing severe symptoms using chest ct scan. Med. Image Anal. 67, 101824 (2021)
Zhu, X., Yang, J., Zhang, C., Zhang, S.: Efficient utilization of missing data in cost-sensitive learning. IEEE Trans. Knowl. Data Eng. https://doi.org/10.1109/TKDE.2019.2956530 (2019)
Zhu, X., Zhang, S., He, W., Hu, R., Lei, C., Zhu, P.: One-step multi-view spectral clustering. IEEE Trans. Knowl. Data Eng. 31(10), 2022–2034 (2018)
Zhu, X., Zhang, S., Zhu, Y., Zhu, P., Gao, Y.: Unsupervised spectral feature selection with dynamic hyper-graph learning. IEEE Trans. Knowl. Data Eng. https://doi.org/10.1109/TKDE.2020.3017250 (2020)
Zhu, X., Zhu, Y., Zheng, W.: Spectral rotation for deep one-step clustering. Pattern Recognit. https://doi.org/10.1016/j.patcog.2019.107175 (2019)
Zhu, Y., Zhu, X., Zheng, W.: Robust multi-view learning via half-quadratic minimization. In: IJCAI, pp. 3278–3284 (2018)
Acknowledgments
This work was partially supported by the National Natural Science Foundation of China (Grant No: 61876046); the Guangxi ”Bagui” Teams for Innovation and Research; and the Sichuan Science and Technology Program (Grants No: 2018GZDZX0032 and 2019YFG0535).
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article belongs to the Topical Collection: Special Issue on Web Intelligence =Artificial Intelligence in the Connected World
Guest Editors: Yuefeng Li, Amit Sheth, Athena Vakali, and Xiaohui Tao
Rights and permissions
About this article
Cite this article
Yuan, C., Zhu, Y., Zhong, Z. et al. Robust self-tuning multi-view clustering. World Wide Web 25, 489–512 (2022). https://doi.org/10.1007/s11280-021-00945-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11280-021-00945-9