Abstract
In this paper, we consider a challenging problem of reconstruction of high resolution (HR) B-mode ultrasound (US) image by proposing a novel multi-frame based super-resolution (SR) scan conversion framework. This new framework of SR scan conversion reconstructs an improved HR frame by using the scan data of several low resolution (LR) frames. It also unifies the speckle reduction and HR scan conversion in such a way that it has become a single operation to generate a super-resolved image with lesser loss of information. We evaluated the performance of the proposed model on synthetic images, ultrasound simulated (by Field II software) images and real ultrasound image dataset and the comparison is performed against some of the publicly available state-of-the-art ultrasound image enhancement techniques. Significant improvement in image quality has been achieved due to utilization of non-redundant information present in the scan data of the LR frames. We demonstrate the improvement of the proposed technique through the computation of perceptual and quantitative quality metrics, such as, SSIM, PSNR etc. over the recent competing methods.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Li, Y., & Zagzebski, J. A. (2000). Computer model for harmonic ultrasound imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, 47(5), 1259–1272.
Nandi, D., Mukhopadhyay, S., Ghosh, D., & Chakroborty, B. (2018). A novel framework of speckle reducing scan conversion in ultrasound imaging systems. IETE Technical Review, 35(6), 618–630.
Li, X., Hu, Y., Gao, X., Tao, D., & Ning, B. (2010). A multi-frame image super-resolution method. Signal Processing, 90(2), 405–414.
Lertrattanapanich, S., & Bose, N. K. (2002). High resolution image formation from low resolution frames using Delaunay triangulation. IEEE Transactions on Image Processing, 11(12), 1427–1441.
Clement, G. T., Huttunen, J., & Hynynen, K. (2005). Superresolution ultrasound imaging using back-projected reconstruction. The Journal of the Acoustical Society of America, 118(6), 3953–3960.
Christensen-Jeffries, K., Browning, R. J., Tang, M. X., Dunsby, C., & Eckersley, R. J. (2014). In vivo acoustic super-resolution and super-resolved velocity mapping using microbubbles. IEEE Transactions on Medical Imaging, 34(2), 433–440.
Bar-Zion, A., Tremblay-Darveau, C., Solomon, O., Adam, D., & Eldar, Y. C. (2016). Fast vascular ultrasound imaging with enhanced spatial resolution and background rejection. IEEE Transactions on Medical Imaging, 36(1), 169–180.
Taxt, T., & Jirik, R. (2004). Superresolution of ultrasound images using the first and second harmonic signal. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, 51(2), 163–175.
Goldberg, B. B., Liu, J. B., & Forsberg, F. (1994). Ultrasound contrast agents: a review. Ultrasound in Medicine & Biology, 20(4), 319–333.
Jang, H. J., Lim, H. K., Lee, W. J., Kim, S. H., Kim, K. A., & Kim, E. Y. (2000). Ultrasonographic evaluation of focal hepatic lesions: comparison of pulse inversion harmonic, tissue harmonic, and conventional imaging techniques. Journal of Ultrasound in Medicine, 19(5), 293–299.
Christensen-Jeffries, K., Harput, S., Brown, J., Wells, P. N., Aljabar, P., Dunsby, C., et al. (2017). Microbubble axial localization errors in ultrasound super-resolution imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, 64(11), 1644–1654.
Morin, R., Basarab, A., Ploquin, M., & Kouamé, D. (2012). Post-processing multiple-frame super-resolution in ultrasound imaging. In Medical imaging 2012: Ultrasonic imaging, tomography, and therapy (vol. 8320, p. 83201G). International Society for Optics and Photonics.
Stark, H., & Oskoui, P. (1989). High-resolution image recovery from image-plane arrays, using convex projections. JOSA A, 6(11), 1715–1726.
Irani, M., & Peleg, S. (1991). Improving resolution by image registration. CVGIP: Graphical Models and Image Processing, 53(3), 231–239.
Papoulis, A. (1975). A new algorithm in spectral analysis and band-limited extrapolation. IEEE Transactions on Circuits and Systems, 22(9), 735–742.
Nandi, D., Karmakar, J., Kumar, A., & Mandal, M. K. (2019). Sparse representation based multi-frame image super-resolution reconstruction using adaptive weighted features. IET Image Processing, 13(4), 663–672.
Hong, M. C., Kang, M. G., & Katsaggelos, A. K. (1997). Regularized multichannel restoration approach for globally optimal high-resolution video sequence. In Visual communications and image processing’97 (Vol. 3024, pp. 1306–1316). International Society for Optics and Photonics.
Elad, M., & Feuer, A. (1999). Superresolution restoration of an image sequence: adaptive filtering approach. IEEE Transactions on Image Processing, 8(3), 387–395.
Duhamel, P., & Maitre, H. (1999). Multi-channel high resolution blind image restoration. In 1999 IEEE international conference on acoustics, speech, and signal processing. proceedings. icassp99 (Cat. No. 99CH36258) (vol. 6, pp. 3229–3232). IEEE.
Rajan, D., & Chaudhuri, S. (2002). Generation of super-resolution images from blurred observations using an MRF model. Journal of Mathematical Imaging and Vision, 16(1), 5–15.
Tsai, R. Y. (1989). Multiple frame image restoration and registration. Advances in Computer Vision and Image Processing, 1, 1715–1989.
Dai, Y., Wang, B., & Liu, D. (2009). A fast and robust super resolution method for intima reconstruction in medical ultrasound. In 2009 3rd International conference on bioinformatics and biomedical engineering (pp. 1–4). IEEE.
Cardona, H. D. V., López-Lopera, A. F., Orozco, Á. A., Álvarez, M. A., Tamames, J. A. H., & Malpica, N. (2015). Gaussian processes for slice-based super-resolution MR images. In International symposium on visual computing (pp. 692–701). Springer, Cham.
Hiremath, P. S., Akkasaligar, P. T., & Badiger, S. (2013). Speckle noise reduction in medical ultrasound images. Intechopen: In Advancements and breakthroughs in ultrasound imaging.
Prabusankarlal, K. M., Manavalan, R., & Sivaranjani, R. (2018). An optimized non-local means filter using automated clustering based preclassification through gap statistics for speckle reduction in breast ultrasound images. Applied Computing and Informatics, 14(1), 48–54.
Lee, J. S. (1980). Digital image enhancement and noise filtering by use of local statistics. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2, 165–168.
Loupas, T., McDicken, W. N., & Allan, P. L. (1989). An adaptive weighted median filter for speckle suppression in medical ultrasonic images. IEEE Transactions on Circuits and Systems, 36(1), 129–135.
Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629–639.
Behar, V., Adam, D., & Friedman, Z. (2003). A new method of spatial compounding imaging. Ultrasonics, 41(5), 377–384.
Chang, J. H., Kim, H. H., Lee, J., & Shung, K. K. (2010). Frequency compounded imaging with a high-frequency dual element transducer. Ultrasonics, 50(4–5), 453–457.
Li, P. C., & Chen, M. J. (2002). Strain compounding: a new approach for speckle reduction. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, 49(1), 39–46.
Ullah, H., Amir, M., Haq, I. U., Khan, S. U., Rahim, M. K. A., & Khan, K. B. (2018). Wavelet based de-noising using logarithmic shrinkage function. Wireless Personal Communications, 98(1), 1473–1488.
Buades, A., Coll, B., & Morel, J. M. (2005). A non-local algorithm for image denoising. In 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05) (Vol. 2, pp. 60–65). IEEE.
Coupé, P., Hellier, P., Kervrann, C., & Barillot, C. (2009). Nonlocal means-based speckle filtering for ultrasound images. IEEE Transactions on Image Processing, 18(10), 2221–2229.
Rudin, L. I., & Osher, S. (1994). Total variation based image restoration with free local constraints. In Proceedings of 1st international conference on image processing (Vol. 1, pp. 31–35). IEEE.
Chinnathambi, V., Sankaralingam, E., Thangaraj, V., & Padma, S. (2018). Despeckling of ultrasound images using directionally decimated wavelet packets with adaptive clustering. IET Image Processing, 13(1), 206–215.
Rawat, N., Singh, M., & Singh, B. (2019). Wavelet and total variation based method using adaptive regularization for speckle noise reduction in ultrasound images. Wireless Personal Communications, 106(3), 1547–1572.
Gungor, M. A., & Karagoz, I. (2015). The homogeneity map method for speckle reduction in diagnostic ultrasound images. Measurement, 68, 100–110.
Wang, S., Huang, T. Z., Zhao, X. L., Mei, J. J., & Huang, J. (2018). Speckle noise removal in ultrasound images by first-and second-order total variation. Numerical Algorithms, 78(2), 513–533.
Tom, B. C., Katsaggelos, A. K., & Galatsanos, N. P. (1994). Reconstruction of a high resolution image from registration and restoration of low resolution images. In Proceedings of 1st international conference on image processing (vol. 3, pp. 553–557). IEEE.
Tom, B. C., & Katsaggelos, A. K. (1995). Reconstruction of a high-resolution image by simultaneous registration, restoration, and interpolation of low-resolution images. In Proceedings., international conference on image processing (vol. 2, pp. 539–542). IEEE.
Nandi, D., & Mukhopadhyay, S. (2011). Super-resolution on data acquired in polar format. International Journal of Computational Intelligence and Healthcare Informatics, 4(2), 63–73.
Vandewalle, P., Süsstrunk, S., & Vetterli, M. (2006). A frequency domain approach to registration of aliased images with application to super-resolution. EURASIP Journal on Advances in Signal Processing, 2006(1), 071459.
Alkinani, M. H., & El-Sakka, M. R. (2017). Patch-based models and algorithms for image denoising: a comparative review between patch-based images denoising methods for additive noise reduction. EURASIP Journal on Image and Video Processing, 2017(1), 1–27.
Smith, J. A. (Ed.). (2010). Abdominal Ultrasound E-Book: How, Why and When. Amsterdam: Elsevier.
Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.
Biswas, R., Sarawadekar, K., Varna, S., & Banerjee, S. (2015). An FPGA-based architecture of DSC-SRI units specially for motion blind ultrasound systems. Journal of Real-Time Image Processing, 10(3), 573–595.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ghosh, D., Kumar, A., Ghosal, P. et al. Filtering Super-Resolution Scan Conversion of Medical Ultrasound Frames. Wireless Pers Commun 116, 883–905 (2021). https://doi.org/10.1007/s11277-020-07744-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-020-07744-x