iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s11277-016-3794-7
Boosting MIMO Systems Performance in Urban Cellular Networks | Wireless Personal Communications Skip to main content
Log in

Boosting MIMO Systems Performance in Urban Cellular Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This work presents solutions to enhance the performance of urban cellular networks based on Multiple-Input Multiple-Output (MIMO) systems. First, some adjustments to the Base Stations (BSs) are proposed and evaluated, namely the reorientation of the antennas and two new placements of the BSs, while maintaining or even diminishing the number of required BSs. Afterwards, a cooperative wireless system is combined with a relay selection scheme, also proposed here, and its performance is assessed; this scheme allows to exploit the MIMO spatial multiplexing gain in a distributed and simple manner. This study is performed for a realistic urban environment, i.e., using a simulator that incorporates realistic underlying models (test environment, mobility and radio propagation models), and it is envisioned for market available technology, such as Long Term Evolution (LTE) and Bluetooth. The simulation results show that not only all the proposed placements of the BSs present a superior performance with respect to the traditional placement, but also the relay selection scheme, when incorporated in the cooperative system, can be a valid approach to increase the MIMO channel capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. 3GPP. (2013). Evolved universal terrestrial radio access (E-UTRA); User equipment (UE) radio transmission and reception (Release 8). Technical Specifications 36.101, v. 8.23.0.

  2. Vieira, P., Queluz, M. P., & Rodrigues, A. (2008). Improving MIMO spectral efficiency in 4G macro-cellular networks. In 2nd URSI Seminar of the Portuguese Committee. Lisbon, Portugal.

  3. Sauter, M. (2010). From GSM to LTE: An introduction to mobile networks and mobile broadband. New York: Wiley.

    Book  Google Scholar 

  4. Foschini, G. J., & Gans, M. J. (1998). On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 6, 311–335.

    Article  Google Scholar 

  5. Telatar, E. (1999). Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications, 10(6), 585–595.

    Article  MathSciNet  Google Scholar 

  6. 3GPP. (1998). Selection procedures for the choice of radio transmission technologies of the UMTS. Technical Report 30.03, v. 3.2.0.

  7. Li, X., & Nie, Z. P. (2004). Effect of array orientation on performance of MIMO wireless channels. IEEE Antennas and Wireless Propagation Letters, 3, 368–371.

    Article  Google Scholar 

  8. Abouda, A. A., El-Sallabi, H. M., & Häggman, S. G. (2006). Effect of antenna array geometry and ULA azimuthal orientation on MIMO channel properties in urban city street grid. Progress in Electromagnetics Research, 64, 257–278.

    Article  Google Scholar 

  9. Sousa, I., Queluz, M. P., & Rodrigues, A. (2013). MIMO Channel Capacity Spatial Distribution in a Microcell Environment. In 2013 IEEE Wireless Communication & Networking Conference (pp. 3197–3202). Shanghai, China.

  10. Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity. Part I. System description. IEEE Transactions on Communications, 51(11), 1927–1938.

    Article  Google Scholar 

  11. Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity. Part II. Implementation aspects and performance analysis. IEEE Transactions on Communications, 51(11), 1939–1948.

    Article  Google Scholar 

  12. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, B., Zhang, J., & Host-Madsen, A. (2005). On the capacity of MIMO relay channels. IEEE Transactions on Information Theory, 51(1), 29–43.

    Article  MathSciNet  MATH  Google Scholar 

  14. Bolcskei, H., Nabar, R. U., Oyman, O., & Paulraj, A. J. (2006). Capacity scaling laws in MIMO relay networks. IEEE Transactions on Wireless Communications, 5(6), 1433–1444.

    Article  Google Scholar 

  15. Fan, Y., & Thompson, J. (2007). MIMO configurations for relay channels: Theory and practice. IEEE Transactions on Wireless Communications, 6(5), 1774–1786.

    Article  Google Scholar 

  16. Liu, P., & Panwar, S. (2009). Randomized spatial multiplexing for distributed cooperative communications. In 2009 IEEE Wireless Communication & Networking Conference (pp. 1646–1651). Budapest, Hungary.

  17. Sousa, I., Queluz, M. P., & Rodrigues, A. (2013). A smart scheme for relay selection in cooperative wireless communication systems. EURASIP Journal on Wireless Communications and Networking, 2013(1), 1–13.

    Article  Google Scholar 

  18. Clarke, P., & de Lamare, R. C. (2012). Transmit diversity and relay selection algorithms for multirelay cooperative MIMO systems. IEEE Transactions on Vehicular Technology, 61(3), 1084–1098.

    Article  Google Scholar 

  19. Ding, M., Liu, S., Luo, H., & Chen, W. (2010). MMSE based greedy antenna selection scheme for AF MIMO relay systems. IEEE Signal Processing Letters, 17(5), 433–436.

    Article  Google Scholar 

  20. Damosso, E., & Correia, L. M. (1999). COST action 231: Digital mobile radio towards future generation systems: Final report. European Commission.

  21. Almers, P., Bonek, E., Burr, A., et al. (2007). Survey of channel and radio propagation models for wireless MIMO systems. EURASIP Journal on Wireless Communications and Networking, 2007(1), 1–19.

  22. Abouda, A. A., & Häggman, S. G. (2006). Effect of mutual coupling on capacity of MIMO wireless channels in high SNR scenario. Progress in Electromagnetics Research, 65, 27–40.

    Article  Google Scholar 

  23. Shimazu, Y., Ohyane, H., Watanabe, T., Yajima, T., & Suwa, S. (2011). LTE base station equipments usable with W-CDMA system. NTT DOCOMO Technical Journal, 13(1), 20–25.

    Google Scholar 

  24. Khan, F. (2009). LTE for 4G mobile broadband: Air interface technologies and performance (1st ed.). New York, NY: Cambridge University Press.

    Book  Google Scholar 

  25. 3GPP. (2013). Evolved universal terrestrial radio access (E-UTRA); Requirements for support of radio resource management (Release 8). Technical Specifications 36.133, v. 8.23.0.

  26. Zurbes, S., Stahl, W., Matheus, K., & Haartsen, J. (2000). Radio network performance of Bluetooth. In 2000 IEEE International Conference on Communications (Vol. 3, pp. 1563–1567). New Orleans, LA, USA.

  27. Sousa, I., Queluz, M. P., Rodrigues, A., & Vieira, P. (2011). Realistic mobility modeling of pedestrian traffic in wireless networks. In IEEE EUROCON 2011 - International Conference on Computer as a Tool. Lisbon, Portugal.

  28. Sousa, I., Queluz, M. P., & Rodrigues, A. (2012). Implementation of the COST 273 directional channel model in microcell scenarios. In 9th International Conference on Wireless Information Networks and Systems. Rome, Italy.

  29. Berg, J. E. (1995). A recursive method for street microcell path loss calculations. In 6th IEEE Personal, Indoor and Mobile Radio Communications Symposium (Vol. 1, pp. 140–143). Toronto, ON, Canada.

  30. Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  31. Love, D. J., Heath, R. W., Lau, V. K. N., Gesbert, D., Rao, B. D., & Andrews, M. (2008). An overview of limited feedback in wireless communication systems. IEEE Journal on Selected Areas in Communications, 26(8), 1341–1365.

    Article  Google Scholar 

  32. Correia, L. M. (2006). Mobile broadband multimedia networks: Techniques, models and tools for 4G. London: Academic Press.

    Google Scholar 

  33. Marcus, M., & Minc, H. (1992). A survey of matrix theory and matrix inequalities. New York: Dover.

    MATH  Google Scholar 

Download references

Acknowledgments

This work was funded by Instituto de Telecomunicações/LA, by Instituto Superior Técnico under a postdoctoral grant (BL2/2015) and by FCT (Foundation for Science and Technology) under project UID/EEA/5008/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Sousa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa, I., Queluz, M.P. & Rodrigues, A. Boosting MIMO Systems Performance in Urban Cellular Networks. Wireless Pers Commun 95, 723–741 (2017). https://doi.org/10.1007/s11277-016-3794-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3794-7

Keywords

Navigation