iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s11277-012-0617-3
Improving RCPC Codes in Rate-Adaptive Optical Wireless Communications Systems | Wireless Personal Communications Skip to main content
Log in

Improving RCPC Codes in Rate-Adaptive Optical Wireless Communications Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we analyse the performance of rate-compatible punctured convolutional (RCPC) codes for wireless optical communications systems. For these environments, a novel hybrid RCPC coding scheme with a modified puncturing matrix is proposed based on the insertion of variable silence periods. This transmission technique achieves better bit-error rate results than conventional RCPC and convolutional coding schemes, in agreement to the obtained increase in the peak-to-average optical power ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kahn J. M., Barry J. R. (1997) Wireless infrared communications. Proceedings of the IEEE 85(2): 265–298

    Article  Google Scholar 

  2. Fadlullah J., Kavehrad M. (2010) Indoor high-bandwidth optical wireless links for sensor networks. Journal of Lightwave Technology 28(21): 3086–3094

    Google Scholar 

  3. Smitha K., Sivabalan A., John J. (2008) Estimation of channel impulse response using modified ceiling bounce model in non-directed indoor optical wireless systems. Wireless Personal Communications 45(1): 1–10

    Article  Google Scholar 

  4. Alqudah Y., Kavehrad M. (2004) Optimum order of angle diversity with equal-gain combining receivers for broadband indoor optical wireless communications. IEEE Transactions on Vehicular Technology 53(1): 94–105

    Article  Google Scholar 

  5. Komine T., Haruyama S., Nakagawa M. (2005) A study of shadowing on indoor visible-light wireless communication utilizing plural white LED lightings. Wireless Personal Communications 34(1): 211–225

    Article  Google Scholar 

  6. Berceli T. (2000) Wireless indoor communications using an optical highway. Wireless Personal Communications 15(1): 1–10

    Article  Google Scholar 

  7. Khozeimeh F., Hranilovic S. (2009) Dynamic spot diffusing configuration for indoor optical wireless access. IEEE Transactions on Communications 57(6): 1765–1775

    Article  Google Scholar 

  8. Castillo-Vázquez M., Jurado-Navas A., Garrido-Balsells J. M., Puerta-Notario A. (2011) Performance evaluation of single-channel receivers for wireless optical communications by numerical simulations. In: Awrejcewicz J. (eds) Numerical analysis—Theory and application. InTech, Croatia, pp 463–478

    Google Scholar 

  9. Ohtsuki T. (2010) Rate-adaptive indoor infrared wireless communication systems using repeated and punctured convolutional codes. IEEE Communications Letters 4(2): 56–58

    Article  Google Scholar 

  10. Akhavan K., Kavehrad M., Jivkova S. (2002) High-speed power-efficient indoor wireless infrared communication using code combining I. IEEE Transactions on Communications 50(7): 1098–1109

    Article  Google Scholar 

  11. Akhavan K., Kavehrad M., Jivkova S. (2002) High-speed power-efficient indoor wireless infrared communication using code combining II. IEEE Transactions on Communications 50(9): 1495–1502

    Article  Google Scholar 

  12. Matsuo, M., Ohtsuki, T., & Sasase, I. (1998). Rate-adaptive indoor infrared wireless communication systems using punctured convolutional codes and adaptive PPM. In Ninth IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (Vol. 2, pp. 693–697).

  13. Tavares A., Valadas R., Aguiar R., Oliveira A. (2003) Angle diversity and rate-adaptive transmission for indoor wireless optical communications. IEEE Communications Magazine 41(3): 64–73

    Article  Google Scholar 

  14. Hagenauer J. (1988) Rate-compatible punctured convolutional codes (RCPC codes) and their applications. IEEE Transactions on Communications 36(4): 389–400

    Article  Google Scholar 

  15. Pei Y., Modestino J. W. (2009) Robust packet video transport over wireless fading channels using a joint source-channel coding approach. Wireless Personal Communications 48(3): 425–439

    Article  Google Scholar 

  16. Garrido-Balsells J. M., García-Zambrana A., Puerta-Notario A. (2006) Variable weight MPPM technique for rate-adaptive optical wireless communications. IEE Electronics Letters 42(1): 43–44

    Article  Google Scholar 

  17. Jurado-Navas A., Garrido-Balsells J. M., Castillo-Vázquez M., Puerta-Notario A. (2010) An efficient rate-adaptive transmission technique using shortened pulses for atmospheric optical communications. Optics Express 18(16): 17346–17363

    Article  Google Scholar 

  18. Safety of laser products—Part 1: Equipment classification and requirements (2nd ed.) (2007). International Electrotechnical Commission.

  19. Lin S., Costello D. J. (2004) Error control coding: Fundamentals and applications. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  20. Vucetic B., Yuan J. (2000) Turbo codes: Principles and applications. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  21. Haccoun D., Bégin G. (1989) High-rate punctured convolutional codes for viterbi and sequential decoding. IEEE Transactions on Communications 37(11): 1113–1125

    Article  Google Scholar 

  22. Halunga S. V., Vizireanu N. (2010) Performance evaluation for conventional and MMSE multiuser detection algorithms in imperfect reception conditions. Digital Signal Processing 20(1): 166–178

    Article  Google Scholar 

  23. Halunga S. V., Vizireanu N., Fratu O. (2010) Imperfect cross-correlation and amplitude balance effects on conventional multiuser decoder with turbo encoding. Digital Signal Processing 20(1): 191–200

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Jurado-Navas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garrido-Balsells, J.M., Jurado-Navas, A., Castillo-Vázquez, M. et al. Improving RCPC Codes in Rate-Adaptive Optical Wireless Communications Systems. Wireless Pers Commun 69, 879–889 (2013). https://doi.org/10.1007/s11277-012-0617-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0617-3

Keywords

Navigation