iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s11277-009-9807-z
Context Matching for Realizing Cognitive Wireless Network Segments | Wireless Personal Communications Skip to main content
Log in

Context Matching for Realizing Cognitive Wireless Network Segments

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Beyond 3rd Generation (B3G) wireless communication systems are comprised from different Radio Access Technologies (RATs) in order to satisfy all user needs in services. The coexistence of many RATs in the same environment needs advanced network management systems in order to ensure efficient resources utilization while achieving the best possible Quality of Service (QoS) levels. Management functionality in the B3G era will have to solve complex problems, due to the existence of versatile options for satisfying stringent requirements, under difficult environment conditions. The introduction of cognitive systems in the B3G world is a direction for addressing the complexity, as it will enable reaching decisions faster and more reliably, by considering also knowledge and experience derived from past interactions of the system with the network environment. Our work presents an approach for identifying whether a context, encountered by the network segment, has also been dealt in the past. In this case context knowledge can be exploited for fast and cost efficient network reconfiguration and adaptation to the environment conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Third (3rd) Generation partnership project. (3GPP) (2008). Web site, www.3gpp.org.

  2. Institute of electrical and electronics engineers. (IEEE) (2008). 802 standards, www.ieee802.org.

  3. WiMAX forum. (2008). http://www.wimaxforum.org.

  4. Wireless world research forum (WWRF). (2008). www.wireless-world-research.org.

  5. Project end-to-end reconfigurability (E 2R). (2004–2007). www.e2r.motlabs.com, 6th framework programme (FP6) of the european commission, information society technologies (IST).

  6. Project end-to-end efficiency (E 3). (2008). www.ict-e3.eu, 7th framework programme (FP7) of the european commission, information and communication technologies (ICT).

  7. Hasselbring W., Reussner R. (2006) Toward trustworthy software systems. Computer 39(4): 91–92. doi:10.1109/MC.2006.142

    Article  Google Scholar 

  8. International telecommunication union—telecommunications standardization bureau (ITU-T). (2001). Communications quality of service: A framework and definitions, recommendation G1000.

  9. International telecommunications union—telecommunications standardization bureau (ITU-T). (2003). End-user multimedia QoS categories, recommendation G1010.

  10. Song Q., Jamalipour A. (2005) Network selection in integrated wireless LAN and UMTS environment using mathematical modelling and computing techniques. IEEE Wireless Communications Magazine 12(3): 42–48

    Article  Google Scholar 

  11. Bari F., Leung V. (2007) Automated network selection in a heterogeneous wireless network environment. IEEE Network 21(1): 34–40

    Article  Google Scholar 

  12. Strassner, J. S. (2004).Policy-based network management: Solution for the next generation. In Elsevier science and technology books. Morgan Kaufmann. ISBN:1558608591, 9781558608597

  13. Demestichas P., Koutsouris N., Koundourakis G., Tsagkaris K., Oikonomou A., Stavroulaki V., Papadopoulou L., Theologou M., Vivier G., El-Khazen K. (2003) Management of networks and services in a composite radio context. IEEE Wireless Communications Magazine 10(4): 44–51

    Article  Google Scholar 

  14. Tsagkaris K., Dimitrakopoulos G., Saatsakis A., Demestichas P. (2007) Distributed radio access technology selection for adaptive networks in high-Speed, B3G infrastructures. International Journal of Communication Systems 20(8): 969–992

    Article  Google Scholar 

  15. Thomas R.W., Friend D.H., DaSilva L.A., McKenzie A.B. (2006) Cognitive networks: Adaptation and learning to achieve end-to-end performance objectives. IEEE Communications Magazine 44(12): 51–57. doi:10.1109/MCOM.2006.273099

    Article  Google Scholar 

  16. Demestichas P., Dimitrakopoulos G., Strassner J., Bourse D. (2006) Introducing reconfigurability and cognitive networks concepts in the wireless world: Research achievements and challenges. IEEE Vehicular Technology Magazine 1(2): 33–39

    Google Scholar 

  17. Mahonen P., Zorzi M. (2007) Cognitive wireless networks. IEEE Wireless Communications Magazine 14(4): 4–5. doi:10.1109/MWC.2007.4300976

    Article  Google Scholar 

  18. Venkatesha Prasad R.V., Pawelczak P., Hoffmeyer J.A., Steven Berger H. (2008) Cognitive functionality in next generation wireless networks: Standardization efforts. IEEE Communications Magazine 46(4): 72–78. doi:10.1109/MCOM.2008.4481343

    Article  Google Scholar 

  19. Sherman M., Mody A.N., Martinez R., Rodriguez C., Reddy R. (2008) IEEE standards supporting cognitive radio and networks, dynamic spectrum access, and coexistence. IEEE Communications Magazine 46(7): 72–79. doi:10.1109/MCOM.2008.4557045

    Article  Google Scholar 

  20. Mitchell T. (1997) Machine learning. McGraw-Hill, New York

    MATH  Google Scholar 

  21. Van Sinderen M. J., Van Halteren A. T., Wegdam M., Meeuwissen H. B., Henk Eertink E. (2006) Supporting context-aware mobile applications. IEEE Communications Magazine 44(9): 96–104

    Article  Google Scholar 

  22. Bellavista P., Corradi A., Montanari R., Tononelli A. (2006) Context–aware semantic discovery for next generation mobile systems. IEEE Communications Magazine 44(9): 62–71

    Article  Google Scholar 

  23. Tsagkaris K., Katidiotis A., Demestichas P. (2008) Neural network-based learning schemes for cognitive radio systems. Computer Communications Journal 31(14): 3394–3404. doi:10.1016/j.comcom.2008.05.040

    Article  Google Scholar 

  24. Liu X., Shankar N. S. (2006) Sensing-based opportunistic channel access. Mobile Networks and Applications Journal 11(4): 577–591

    Article  Google Scholar 

  25. Kim H., Shin K. G. (2008) Efficient discovery of spectrum opportunities with MAC-layer sensing in cognitive radio networks. IEEE Transactions on Mobile Computing 7(5): 533–545

    Article  MathSciNet  Google Scholar 

  26. Perez-Romero, J., Sallent, O., Agusti, R., & Giupponi, L. (2007). A novel on-demand cognitive pilot channel enabling dynamic spectrum allocation. In Proceeding of 2nd international symposium on new frontiers in dynamic spectrum access networks 2007 (DySPAN 2007), Dublin, Ireland.

  27. Kephart J., Chess D. (2003) The vision of autonomic computing. IEEE Computer 36(1): 41–50

    Google Scholar 

  28. Demestichas P., Boscovic D., Stavroulaki V., Lee A., Strassner J. (2006) m@ANGEL: Autonomic management platform for seamless wireless cognitive connectivity. IEEE Communications Magazine 44(6): 118–127

    Article  Google Scholar 

  29. Nolan K., Doyle L. (2007) Teamwork and collaboration in cognitive wireless networks. IEEE Wireless Communications Magazine 14(4): 22–27

    Article  Google Scholar 

  30. Mas-Collel A. (1995) Microeconomics. Oxford University Press, Oxford

    Google Scholar 

  31. Demestichas P., Dimitrakopoulos G., Tsagkaris K., Stavroulaki V., Katidiotis A. (2007) Introducing cognitive systems to the B3G wireless world, cognitive wireless networks: Concepts, methodologies and visions inspiring the age of enlightenment of wireless communications. Springer, Dordrecht, The Netherlands, pp 253–269

    Google Scholar 

  32. Dimitrakopoulos, G., Tsagkaris, K., Demestichas, K., Adamopoulou, E., & Demestichas, P. A management scheme for distributed cross-layer reconfigurations in the context of cognitive B3G infrastructures. accepted for publication in the Computer Communications journal.

  33. Zhan, Y., Chen, H., & Zhang, G.-C. (2006). An optimization algorithm of K-NN classification. In Proceeding of international conference on machine learning and cybernetics (pp. 2246–2251).

  34. Samet H. (2008) K-Nearest neighbor finding using MaxNearestDist. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(2): 243–252

    Article  MathSciNet  Google Scholar 

  35. Yu, X.-G., & Yu, X.-P. (2006). The research on an adaptive K-NN classifier. In Proceeding of fifth international conference on machine learning and cybernetics.

  36. Demestichas P., Tzifa E., Anagnostou M. (1998) Traffic adaptive aggregate channel allocation for future cellular communication systems. International Journal of Communication Systems 11: 337–349

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Saatsakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saatsakis, A., Demestichas, P. Context Matching for Realizing Cognitive Wireless Network Segments. Wireless Pers Commun 55, 407–440 (2010). https://doi.org/10.1007/s11277-009-9807-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-009-9807-z

Keywords

Navigation