iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s11276-016-1233-z
Visible light communications heterogeneous network (VLC-HetNet): new model and protocols for mobile scenario | Wireless Networks Skip to main content
Log in

Visible light communications heterogeneous network (VLC-HetNet): new model and protocols for mobile scenario

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In order to resolve the crowded radio spectrum of wireless communication systems, visible light communications (VLC), which uses a vast unregulated and free light spectrum, has emerged to be a viable solution. However, duplex communication, user mobility, multi-user access and transmission mechanisms are becoming challenging tasks in VLC network. In this article, we propose a new VLC heterogeneous network (VLC-HetNet) model which merges VLC and radio frequency (RF) network. VLC channel is only used for downlink transmission, while RF channels are served for uplinks in any situation, or for downlinks only without VLC hotspots coverage. New VLC frame, multi-user access mechanism, horizontal and vertical handover protocols are presented to support the VLC-HetNet model, especially for solving the problems at multi-user mobility scenario. Simulation results show improvements in capacity performance of the VLC-HetNet, when compared to RF system. Besides, the average vertical handover number and VLC downlink dwelling time ratio have been analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cisco. (2012). Cisco visual networking index: Global Mobile data traffic forecast update, 2011–2016. Whitepaper. www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html.

  2. National Telecommunications and Information Admission (NTIA). (2003). FCC frequency allocation chart. http://www.Ntia.doc.gov/osmhome/allochrt.pdf.

  3. Kavehrad, M. (2010). Sustainable energy-efficient wireless applications using light. IEEE Communications Magazine, 48(12), 66–73.

    Article  Google Scholar 

  4. Hanzo, L., Haas, H., Imre, S., et al. (2012). Wireless myths, realities, and futures: From 3G/4G to optical and quantum wireless. Proceedings of the IEEE, 100, 1853–1888.

    Article  Google Scholar 

  5. Elgala, H., Mesleh, R., & Haas, H. (2011). Indoor optical wireless communication: Potential and state-of-the-art. IEEE Communications Magazine, 49(9), 56–62.

    Article  Google Scholar 

  6. O’Brien, D., Zeng, L., Le-Minh, H., Faulkner, G., Walewski, J., Randel, S. (2008). Visible light communications: Challenges and possibilities. In IEEE 19th international symposium on personal, indoor and mobile radio communications, New York, USA (pp. 2987–2991).

  7. WPAN Visible Light Communication Study Group. (2008). IEEE Std. 802.15.

  8. Torkenstani, S., Sahuguede, S., Julien-Vergonjanne, A., & Cances, J. (2012). Indoor optical wireless system dedicated to healthcare application in a hospital. IET Communications, 6(5), 541–547.

    Article  MathSciNet  Google Scholar 

  9. Delgado, F., Quintana, I., Rufo, J., Rabadan, J., Quintana, A., & Perez-Jimenez, R. (2010). Design and implementation of an ethernet-VLC interface for broadcast transmissions. IEEE Communications Letters, 14(12), 1089–1091.

    Article  Google Scholar 

  10. Ghassemlooy, W., Minh, Z., Rajbhandari, S., Lim, W. (2012). Optimisation of transmission bandwidth for indoor cellular OWC system using a dynamic handover decision-making algorithm. In Proceedings of the 8th symposium on communication systems, networks and digital signal processing, Poznan, Poland, 2012 (CSNDSP 2012) (pp. 1–4).

  11. Hou, J., & O’Brien, D. (2006). Vertical handover decision-making algorithm using fuzzy logic for the integrated radio-and-OW system. IEEE Transactions on Wireless Communications, 5(1), 176–185.

    Article  Google Scholar 

  12. Rahaim, M., Vegni, A., Little, T. (2011). A Hybrid radio frequency and broadcast visible light communication system. In Proceedings of IEEE GLOBECOM, New York, USA (pp. 792–796).

  13. Chowdhury, H., & Katz, M. (2014). Cooperative data download on the move in indoor hybrid (radio-optical) WLAN-VLC hotspot coverage. Transactions on Emerging Telecommunications Technologies, 25(6), 666–677.

    Article  Google Scholar 

  14. Huang, Z. T., & Ji, Y. F. (2013). Design and demonstration of room division multiplexing-based hybrid VLC network. Chinese Optics Letters, 11(6), 060603.

    Article  Google Scholar 

  15. Jungnickel, V., Pohl, V., Noenning, S., & von Helmolt, C. (2002). A physical model for the wireless infrared communication channel. IEEE Journal on Selected Areas in Communications, 20(3), 631–640.

    Article  Google Scholar 

  16. Fath, T., & Haas, H. (2013). Performance comparison of MIMO techniques for optical wireless communications in indoor environments. IEEE Transactions on Communication, 61(2), 733–742.

    Article  Google Scholar 

  17. Bao, X., Yu, G., Dai, J., & Zhu, X. (2015). Li-Fi: Light fidelity—A survey. Wireless Networks, 21, 1879–1889.

    Article  Google Scholar 

  18. O’Brien, D., Turnbull, R., Minh, H., et al. (2012). High-speed optical wireless demonstrators: Conclusions and future directions. Journal of Lightwave Technology, 30(13), 2181–2187.

    Article  Google Scholar 

  19. Singh, S., Andrews, J., & Veciana, G. (2012). Interference shaping for improved quality of experience for real-time video streaming. IEEE Journal on Selected Areas in Communications, 30(7), 1259–1269.

    Article  Google Scholar 

  20. Gross, D., Shortle, J., Thompson, J., & Harris, C. (2008). Fundamentals of queueing theory (4th ed.). Hoboken: Wiley.

    Book  MATH  Google Scholar 

  21. Goldsmith, A. (2005). Wireless communications (1st ed.). Cambridge: Cambridge University Press.

    Book  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (Grant Nos. 61502210 and 61571211), the Natural Science Foundation of Jiangsu Province (No. BK20130530), China Postdoctoral Science Foundation (Grant No. 2015M570484), Programs of Senior Talent Foundation of Jiangsu University (No. 11JDG130) and the Open Research Fund of National Mobile Communications Research Laboratory, Southeast University (Nos. 2013D01 and 2013D08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Bao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, X., Dai, J. & Zhu, X. Visible light communications heterogeneous network (VLC-HetNet): new model and protocols for mobile scenario. Wireless Netw 23, 299–309 (2017). https://doi.org/10.1007/s11276-016-1233-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1233-z

Keywords

Navigation