Abstract
The signature of selection is a crucial concept in evolutionary biology that refers to the pattern of genetic variation which arises in a population due to natural selection. In the context of climate adaptation, the signature of selection can reveal the genetic basis of adaptive traits that enable organisms to survive and thrive in changing environmental conditions. Breeds living in diverse agroecological zones exhibit genetic “footprints” within their genomes that mirror the influence of climate-induced selective pressures, subsequently impacting phenotypic variance. It is assumed that the genomes of animals residing in these regions have been altered through selection for various climatic adaptations. These regions are known as signatures of selection and can be identified using various summary statistics. We examined genotypic data from eight different cattle breeds (Gir, Hariana, Kankrej, Nelore, Ongole, Red Sindhi, Sahiwal, and Tharparkar) that are adapted to diverse regional climates. To identify selection signature regions in this investigation, we used four intra-population statistics: Tajima’s D, CLR, iHS, and ROH. In this study, we utilized Bovine 50 K chip data and four genome scan techniques to assess the genetic regions of positive selection for high-temperature adaptation. We have also performed a genome-wide investigation of genetic diversity, inbreeding, and effective population size in our target dataset. We identified potential regions for selection that are likely to be caused by adverse climatic conditions. We observed many adaptation genes in several potential selection signature areas. These include genes like HSPB2, HSPB3, HSP20, HSP90AB1, HSF4, HSPA1B, CLPB, GAP43, MITF, and MCHR1 which have been reported in the cattle populations that live in varied climatic regions. The findings demonstrated that genes involved in disease resistance and thermotolerance were subjected to intense selection. The findings have implications for marker-assisted breeding, understanding the genetic landscape of climate-induced adaptation, putting breeding and conservation programs into action.
Similar content being viewed by others
Data availability
The WIDDE database and the Dryad repository both contain the genotypic data used for this study (http://widde.toulouse.inra.fr/widde/). The genotypic information for the 72 Tharparkar animals utilized in this work is accessible with the corresponding author, and due to some institutional liabilities, we can disclose this dataset on request.
References
Abioja, M. O., Logunleko, M. O., Majekodunmi, B. C., Adekunle, E. O., Shittu, O. O., Odeyemi, A. J., ... & Daramola, J. O. (2022). Roles of Candidate Genes in the Adaptation of Goats to Heat Stress: A Review. Small Ruminant Research, 106878.
Ahmad, S.F., Panigrahi, M., Chhotaray, S., Pal, D., Parida, S., Bhushan, B., Gaur, G.K., Mishra, B.P. and Singh, R.K. (2020). Revelation of genomic breed composition in a crossbred cattle of India with the help of Bovine50K BeadChip. Genomics, 112(2), 1531-1535.
Ajmone-Marsan, P. and Globaldiv Consortium, 2010. A global view of livestock biodiversity and conservation–GLOBALDIV. Animal genetics, 41, pp.1-5.
Al-Massadi, O., Dieguez, C., Schneeberger, M. et al. Multifaceted actions of melanin-concentrating hormone on mammalian energy homeostasis. Nat Rev Endocrinol 17, 745–755 (2021).
Amaral AJ, Ferretti L, Megens HJ, Crooijmans RPMA, Nie HS, RamosOnsins SE, Perez-Enciso M, Schook LB, Groenen MAM. 2011. Genome-wide footprints of pig domestication and selection revealed through massive parallel sequencing of pooled DNA. PLoS One 6:e14782.
Almeida, O.A.C., Moreira, G.C.M., Rezende, F.M., Boschiero, C., de Oliveira Peixoto, J., Ibelli, A.M.G., Ledur, M.C., de Novais, F.J. and Coutinho, L.L., (2019). Identification of selection signatures involved in performance traits in a paternal broiler line. BMC genomics, 20(1), 1-20.
Bamshad, M., & Wooding, S. P. (2003). Signatures of natural selection in the human genome. Nature Reviews Genetics, 4(2), 99-110.
Barbato M, Orozco-terWengel P, Tapio M, Bruford MW. SNeP: a tool to estimate trends in recent effective population size trajectories using genome-wide SNP data. Front Genet. 2015;6:109.
Bharati, J., Dangi, S. S., Mishra, S. R., Chouhan, V. S., Verma, V., Shankar, O., ... & Sarkar, M. (2017). Expression analysis of toll like receptors and interleukins in Tharparkar cattle during acclimation to heat stress exposure. Journal of Thermal Biology, 65, 48–56.
Choudhary, R., Goud, T. S., Kumar, A., Sharma, A. K., Singh, S. V., Upadhyay, R. C., ... & Kumar, S. (2017). Heat stress induced adaptation in melanocytes is dependent on the level of melanin and reduction of apoptosis. Journal of Dermatological Science, 85(3), 250–252.
Chhotaray, S., Panigrahi, M., Pal, D., Ahmad, S.F., Bhushan, B., Gaur, G.K., Mishra, B.P. and Singh, R.K., 2020. Ancestry informative markers derived from discriminant analysis of principal components provide important insights into the composition of crossbred cattle. Genomics, 112(2), 1726-1733.
Chhotaray, S., Panigrahi, M., Bhushan, B., Gaur, G.K., Dutt, T., Mishra, B.P. and Singh, R.K. (2021). Genome-wide association study reveals genes crucial for coat color production in Vrindavani cattle. Livestock Science, 247, 104476.
Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., ... & 1000 Genomes Project Analysis Group. (2011). The variant call format and VCFtools. Bioinformatics, 27(15), 2156-2158.
Deloulme, J. C., Janet, T., Au, D., Storm, D. R., Sensenbrenner, M., & Baudier, J. (1990). Neuromodulin (GAP43): a neuronal protein kinase C substrate is also present in 0–2A glial cell lineage. Characterization of neuromodulin in secondary cultures of oligodendrocytes and comparison with the neuronal antigen. The Journal of cell biology, 111(4), 1559–1569.
Do C, Waples RS, Peel D, et al. NeEstimator v2: reimplementation of software for the estimation of contemporary effective population size (Ne) from genetic data . Mol Ecol Resour. 2014;14(1):209–214. 37.
Edea, Z., Dadi, H., Dessie, T., Kim, K.S. (2019). Genomic Signatures of High-Altitude Adaptation in Ethiopian Sheep Popula-Tions. Genes Genom. 41, 973–981.
Fariello MI, Boitard S, Naya H, SanCristobal M, Servin B. 2013. Detecting signatures of selection through haplotype differentiation among hierarchically structured populations. Genetics 193: 929–941
Friedrich, J. and Wiener, P., 2020. Selection signatures for high-altitude adaptation in ruminants. Animal Genetics, 51(2), 157-165.
Gao, Y., Gautier, M., Ding, X., Zhang, H., Wang, Y., Wang, X., ... & Zhang, Y. (2017). Species composition and environmental adaptation of indigenous Chinese cattle. Scientific reports, 7(1), 1–14.
Gautier, M., & Vitalis, R. (2012). rehh: an R package to detect footprints of selection in genome-wide SNP data from haplotype structure. Bioinformatics, 28(8), 1176-1177.
Gentry, A., Clutton-Brock, J., & Groves, C. P. (2004). The naming of wild animal species and their domestic derivatives. Journal of Archaeological Science, 31(5), 645-651.
Ghildiyal, K., Panigrahi, M., Kumar, H., Rajawat, D., Nayak, S. S., Lei, C., Bhushan, B., & Dutt, T. (2023a). Selection signatures for fiber production in commercial species: A review. Animal Genetics, 54(1), 3–23. https://doi.org/10.1111/age.13272
Ghildiyal, K., Nayak, S.S., Rajawat, D., Sharma, A., Chottaray, S., Bhushan, B., Dutt, T. and Panigrahi, M., 2023b. Genomic insights into the conservation of wild and animal diversity: A Review. Gene, p.147719.
Grabek, K. R., Cooke, T. F., Epperson, L. E., Spees, K. K., Cabral, G. F., Sutton, S. C., ... & Bustamante, C. D. (2017). Genetic architecture drives seasonal onset of hibernation in the 13-lined ground squirrel. bioRxiv, 222307.
Gu JJ, Orr N, Park SD, Katz LM, Sulimova G, MacHugh DE, Hill EW. 2009. A Genome scanfor positive selection in thoroughbred horses. PLoS ONE 4: e5767.
Jia, L., Chu, H., Wu, D., Feng, M., & Zhao, L. (2014). Role of calmodulin in thermotolerance. Plant signaling & behavior, 9(6), e28887.
Joost, S., Bonin, A., Bruford, M. W., Després, L., Conord, C., Erhardt, G., & Taberlet, P. (2007). A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Molecular ecology, 16(18), 3955-3969.
Kijas, J. W., Lenstra, J. A., Hayes, B., Boitard, S., Porto Neto, L. R., San Cristobal, M., ...& International Sheep Genomics Consortium. (2012). Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS biology, 10(2), e1001258.
Kullo IJ, Ding K. Patterns of population differentiation of candidate genes for cardiovascular disease. BMC Genet. 2007;8:48.
Kumar, H., Panigrahi, M., Panwar, A., Rajawat, D., Nayak, S. S., Saravanan, K. A., Kaisa, K., Parida, S., Bhushan, B., Dutt, T. 2022. Machine-Learning Prospects for Detecting Selection Signatures Using Population Genomics Data. J. Comput. Biol. https://doi.org/10.1089/cmb.2021.0447
Kumar, H., Panigrahi, M., Saravanan, K. A., Rajawat, D., Parida, S., Bhushan, B., Gaur, G. K., Dutt, T., Mishra, B. P., Singh, R. K., 2021. Genome-wide detection of copy number variations in Tharparkar cattle. Anim. Biotechnol. 1–8. https://doi.org/10.1080/10495398.2021.1942027
Kumar, H., Panigrahi, M., G. Strillacci, M., Sonejita Nayak, S., Rajawat, D., Ghildiyal, K., Bhushan, B. and Dutt, T., 2023. Detection of genome-wide copy number variation in Murrah buffaloes. Animal Biotechnology, pp.1–13.
Lewontin RC, Krakauer J. Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics. 1973;74:175–95.
Li, R.; Li, H.; Chen, R.; Chong, Q.; Xiao, H.; Chen, S. Genome-Wide Scan of Selection Signatures in Dehong Humped Cattle for Heat Tolerance and Disease Resistance. Anim. Genet. 2020, 51, 292–299.
Li, L., Yu, S., Chen, J., Quan, M., Gao, Y., & Li, Y. (2022). miR-15a and miR-20b sensitize hepatocellular carcinoma cells to sorafenib through repressing CDC37L1 and consequent PPIA downregulation. Cell Death Discovery, 8(1), 297.
Luikart G, England PR, Tallmon D, Jordan S, Taberlet P. 2003. The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet. 4:981–994.
Luna-Nevárez, G., Pendleton, A. L., Luna-Ramirez, R. I., Limesand, S. W., Reyna-Granados, J. R., & Luna-Nevárez, P. (2021). Genome-wide association study of a thermo-tolerance indicator in pregnant ewes exposed to an artificial heat-stressed environment. Journal of Thermal Biology, 101, 103095.
Lynch, M., Ackerman, M., Gout, JF. et al. Genetic drift, selection and the evolution of the mutation rate. Nat Rev Genet 17, 704–714 (2016). https://doi.org/10.1038/nrg.2016.104
MacCallum, C., & Hill, E. (2006). Being positive about selection. PLoS biology, 4(3), e87.
McQuillan R, Leutenegger AL, Abdel-Rahman R, et al. Runs of homozygosity in European populations. Am J Hum Genet. 2008;83(3):359–372.
L. Min, S. Zhao, H. Tian, X. Zhou, Y. Zhang, S. Li, H. Yang, N. Zheng, J. Wang, Metabolic responses and “omics” technologies for elucidating the effects of heat stress in dairy cows, Int. J. Biometeorol. 61 (2016) 1149–1158, https://doi.org/10.1007/s00484-016-1283-z.
Nayak, S.S., Kumar, H., Rajawat, D., Saravanan, K.A., Panwar, A., Ghildiyal, K., Smaraki, N., Jogi, H.R., Sharma, A., Bhushan, B. and Dutt, T., Panigrahi, M., 2023a. Coalescence: An anti-clockwise travel.
Nayak, S.S., Panigrahi, M., Kumar, H., Rajawat, D., Sharma, A., Bhushan, B. and Dutt, T., 2023b. Evidence for selective sweeps in the MHC gene repertoire of various cattle breeds. Animal Biotechnology, pp.1–7.
Nayak, S.S., Panigrahi, M., Rajawat, D., Ghildiyal, K., Sharma, A., Parida, S., Bhushan, B., Mishra, B.P. and Dutt, T., 2023c. Comprehensive selection signature analyses in dairy cattle exploiting purebred and crossbred genomic data. Mammalian Genome, pp.1–17.
Neafsey, D. E., Schaffner, S. F., Volkman, S. K., Park, D., Montgomery, P., Milner, D. A., ... & Wirth, D. F. (2008). Genome-wide SNP genotyping highlights the role of natural selection in Plasmodium falciparumpopulation divergence. Genome biology, 9(12), 1–16.
Nielsen R, Hellmann I, Hubisz M, Bustamante C, Clark AG. 2007. Recent and ongoingselection in the human genome.Nat Rev Genet. 8: 857–868.
Pal, D., Panigrahi, M., Chhotaray, S., Kumar, H., Nayak, S.S., Rajawat, D., Parida, S., Gaur, G.K., Dutt, T. and Bhushan, B., 2022. Unraveling genetic admixture in the Indian crossbred cattle by different approaches using Bovine 50K BeadChip. Tropical Animal Health and Production, 54(2), p.135.
Panigrahi, M., Kumar, H., Nayak, S.S., Rajawat, D., Parida, S., Bhushan, B., Sharma, A. and Dutt, T., 2022a. Molecular characterization of CRBR2 fragment of TLR4 gene in association with mastitis in Vrindavani cattle. Microbial Pathogenesis, 165, p.105483.
Panigrahi, M., Kumar, H., Saravanan, K. A., Rajawat, D., Sonejita Nayak, S., Ghildiyal, K., Kaisa, K., Parida, S., Bhushan, B., & Dutt, T. (2022b). Trajectory of livestock genomics in South Asia: A comprehensive review. Gene, 843(146808), 146808. https://doi.org/10.1016/j.gene.2022.146808
Panigrahi, M., Rajawat, D., Nayak, S.S., Ghildiyal, K., Sharma, A., Jain, K., Lei, C., Bhushan, B., Mishra, B.P. and Dutt, T., 2023. Landmarks in the history of selective sweeps. Animal Genetics. https://doi.org/10.1111/age.13355
Pirkkala, L., Nykänen, P., & Sistonen, L. E. A. (2001). Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. The FASEB Journal, 15(7), 1118-1131.
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., and Sham, P. C. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81(3), 559-575.
Qanbari S, Pimentel ECG, Tetens J, Thaller G, Lichtner P, Sharifi AR, Simianer H. 2010. Agenome-wide scan for signatures of recent selection in Holstein cattle. Anim Genet. 41:377-389
Rajawat, D., Panigrahi, M., Kumar, H., Nayak, S. S., Saravanan, K. A., Bhushan, B., & Dutt, T. (2022b). Revealing genomic footprints of selection for fiber and production traits in three Indian sheep breeds. Journal of Natural Fibers, 19(16), 14963–14974. https://doi.org/10.1080/15440478.2022.2069198
Rajawat, D., Panigrahi, M., Kumar, H., Nayak, S. S., Parida, S., Bhushan, B., Gaur, G. K., Dutt, T., & Mishra, B. P. (2022a). Identification of important genomic footprints using eight different selection signature statistics in domestic cattle breeds. Gene, 816.
Rajawat, D., Panigrahi, M., Nayak, S.S., Ghildiyal, K., Sharma, A., Kumar, H., Parida, S., Bhushan, B., Gaur, G.K., Mishra, B.P. and Dutt, T., 2023. Uncovering genes underlying coat color variation in indigenous cattle breeds through genome-wide positive selection. Animal Biotechnology, pp.1–14.
Randhawa I.A.S., Khatkar M.S., Thomson P.C. & Raadsma H.W. (2014) Composite selection signals can localize the trait specific genomic regions in multi-breed populations of cattle and sheep. BMC Genetics 15, 1601–8.
Saadeldin, I. M., Swelum, A. A. A., Elsafadi, M., Mahmood, A., Osama, A., Shikshaky, H., ... & Magdeldin, S. (2020). Thermotolerance and plasticity of camel somatic cells exposed to acute and chronic heat stress. Journal of advanced research, 22, 105–118.
Sabeti PC, Schaffner SF, Fry B, Lohmueller J, Varilly P, Shamovsky O, Palma A, Mikkelsen TS, Altshuler D, Lander ES. (2006). Positive natural selection in the human lineage. Science, 312(5780), 1614-20. https://doi.org/10.1126/science.1124309.
Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, et al (2007). Genome-wide detection and characterization of positive selection in human populations. Nature, 449, 913-918. https://doi.org/10.1038/nature06250.
Saravanan, K. A., Panigrahi, M., Kumar, H., Parida, S., Bhushan, B., Gaur, G. K., ... & Singh, R. K. (2020). Genome-wide assessment of genetic diversity, linkage disequilibrium and haplotype block structure in Tharparkar cattle breed of India. Animal biotechnology, 33(2), 297–311.
Saravanan, K. A., Panigrahi, M., Kumar, H., Parida, S., Bhushan, B., Gaur, G. K., ... & Singh, R. K. (2021). Genomic scans for selection signatures revealed candidate genes for adaptation and production traits in a variety of cattle breeds. Genomics, 113(3), 955–963.
Saravanan, K. A., Panigrahi, M., Kumar, H., Nayak, S. S., Rajawat, D., Bhushan, B., & Dutt, T. (2022a). Progress and future perspectives of livestock genomics in India: a mini-review. Animal Biotechnology, 1–9. https://doi.org/10.1080/10495398.2022.2056046
Saravanan, K. A., Rajawat, D., Kumar, H., Nayak, S. S., Bhushan, B., Dutt, T., & Panigrahi, M. (2022b). Signatures of selection in riverine buffalo populations revealed by genome-wide SNP data. Animal Biotechnology, 1–12. https://doi.org/10.1080/10495398.2022.2145292
Savalia, K. B., Ahlawat, A. R., Gamit, V. V., Parikh, S. S., & Verma, A. D. (2019). Recently recognized indigenous cattle breeds of India: A review. International Journal of Current Microbiology and Applied Sciences, 8(12), 161-168.
Schafer C, Steffen H, Krzykowski KJ, Goke B, Groblewski GE. CRHSP-24 phosphorylation is regulated by multiple signaling pathways in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol. 2003;285(4):G726–34.
Stella A, Ajmone-Marsan P, Lazzari B, Boettcher P. 2010. Identification of selectionsignatures in cattle breeds selected for dairy production.Genetics 185: 1451–1498
Sved JA, Feldman MW. Correlation and probability methods for one and two loci. Theor Popul Biol. 1973; 4(1):129–132.
Szpiech, Z.A., Xu, J., Pemberton, T.J., Peng, W., Zöllner, S., Rosenberg, N.A. and Li, J.Z. (2013). Long runs of homozygosity are enriched for deleterious variation. The American Journal of Human Genetics, 93(1), 90-102.
Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.
Tang, S., Yin, B., Xu, J., & Bao, E. (2018). Rosemary reduces heat stress by inducing CRYAB and HSP70 expression in broiler chickens. Oxidative Medicine and Cellular Longevity, 2018.
The Bovine HapMap Consortium, Gibbs, R. A., Taylor, J. F., Tassel, C. V., Barendse, W., Eversole, K. A., Gill, C. A., and Green, R. D. 2009. Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science.324 (5926): 528-532.
van Marle-Köster, E., & Visser, C. (2018). Genetic improvement in South African livestock: can genomics bridge the gap between the developed and developing sectors?. Frontiers in Genetics, 9, 331.
Voight BF, Kudaravalli S, Wen X, Pritchard JK: A map of recent positive selection in the human genome. PLoS Biology. 2006, 4: e72–https://doi.org/10.1371/journal.pbio.0040072.
Wang, X.; Ju, Z.; Jiang, Q.; Zhong, J.; Liu, C.; Wang, J.; Hoff, J.L.; Schnabel, R.D.; Zhao, H.; Gao, Y.; et al. Introgression, Admixture and Selection Facilitate Genetic Adaptation to High-Altitude Environments in Cattle. Genomics 2021, 113, 1491–1503.
Weir B.S. & Cockerham C.C. (1984) Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–70.
Williamson, S. H., Hubisz, M. J., Clark, A. G., Payseur, B. A., Bustamante, C. D., & Nielsen, R. (2007). Localizing recent adaptive evolution in the human genome. PLoS genetics, 3(6), e90.
Yang, J., Jin, Z.B., Chen, J., Huang, X.F., Li, X.M., Liang, Y.B., Mao, J.Y., Chen, X., Zheng, Z., Bakshi, A. and Zheng, D.D., 2017. Genetic signatures of high-altitude adaptation in Tibetans. Proceedings of the National Academy of Sciences, 114(16), 4189-4194.
Zhao, Qb., Oyelami, F.O., Qadri, Q.R. et al. Identifying the unique characteristics of the Chinese indigenous pig breeds in the Yangtze River Delta region for precise conservation. BMC Genomics 22, 151 (2021).
Acknowledgements
Support received from the National Agricultural Science Fund (NASF), Indian Council of Agricultural Research, New Delhi, India, for carrying out this work is duly acknowledged. The authors wish to thank the Director and Joint Director (Research), ICAR-Indian Veterinary Research Institute, Bareilly, India, for providing the necessary facilities during this study.
Author information
Authors and Affiliations
Contributions
SSN: methodology and writing—original draft. MP: conceptualization, methodology, and writing—review and editing. DR: writing—review and editing. KG: review and editing. AS: writing—review and editing. KJ: writing—review and editing. BB and TD: resources and supervision.
Corresponding author
Ethics declarations
Ethical approval
All the procedures performed in this study involving animals were following the ethical standards of the Institutional Animal Ethics Committee (IAEC) of ICAR-IVRI, Izatnagar, Bareilly, India (NO.F.1–53/2018–19/J. D(R)).
Competing interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Nayak, S.S., Panigrahi, M., Rajawat, D. et al. Deciphering climate resilience in Indian cattle breeds by selection signature analyses. Trop Anim Health Prod 56, 46 (2024). https://doi.org/10.1007/s11250-023-03879-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11250-023-03879-8