iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s11235-020-00718-1
A survey on femtocell handover management in dense heterogeneous 5G networks | Telecommunication Systems Skip to main content

Advertisement

Log in

A survey on femtocell handover management in dense heterogeneous 5G networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The Heterogeneous Network is widely used in the Fifth Generation wireless network to solve the problem of increasing demand on wireless communication. Femtocell or called Home-evolved NodeB (HeNB) is one of the small cells nominated to be used in this generation. HeNB is a low-power, low-cost, and short coverage area base station randomly assigned by the user. Therefore, HeNB is used in Long Term Evolution (LTE/LTE-Advanced) to support Quality of Service next to conventional cell. Based on the short range and dense use of HeNB, the seamless handover procedure is one of the challenges HeNet system is facing. Though there are numerous present literature work for handover decision issues, this paper attempts to present handover management challenges and the outline of modern handover decision algorithms in between the evolved NodeB (eNB) and HeNB. Furthermore, comprehensive details of the handover procedure in LTE-A Heterogeneous Networks are presented. This survey categorizes the recent studies in decision algorithms for the two-tier network (eNB and HeNB) regarding the main decision technique. Finally, a comprehensive summary of input parameters, techniques, and performance evaluation for each handover decision scheme are discussed by providing the advantage and disadvantage of each category.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Cisco. (2017). Global mobile data traffic forecast update, 2015–2022 white paper. Retrieved April 03, 2017, from http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html.

  2. Gupta, M. S., Srivastava, A., & Kumar, K. (2019). Seamless vertical handover for efficient mobility management in cooperative heterogeneous networks. In Advances in intelligent systems and computing (Vol. 828, pp. 145–153). Springer: Singapore.

  3. Chandavarkar, B. R., & Guddeti, R. M. R. (2016). Simplified and improved multiple attributes alternate ranking method for vertical handover decision in heterogeneous wireless networks. Computer Communications, 83, 81–97.

    Google Scholar 

  4. Bangerter, B., Talwar, S., Arefi, R., & Stewart, K. (2014). Networks and devices for the 5G era. IEEE Communications Magazine, 52(2), 90–96.

    Google Scholar 

  5. GPP. (2008). Evolved universal terrestrial radio access (E-UTRA); physical channels and modulation (Release 8), 3rd Generation Partnership Project TS 136 211 (Vol. 8.4.0, pp. 0–87).

  6. GPP. (2010). Evolved universal terrestrial radio access (E-UTRA); physical channels and modulation (Release 9), 3rd Generation Partnership Project. TS 36.211 (Vol. 9.1.0).

  7. GPP. (2018). Universal mobile telelecommunications system (UMTS); radio frequency (RF) system scenarios (Release 13), 3rd Generation Partnership Project TR 1 125 942 (Vol. 15.0.0, pp. 0–135).

  8. GPP. (2016). Evolved universal terrestrial radio access (E-UTRA); radio frequency (RF) system scenarios (Release 13), 3rd Generation Partnership Project TR 36 942 (Vol. 13.0.0, pp. 0–84).

  9. Deswal, S., & Singhrova, A. (2016). Handover algorithm for heterogeneous networks. In 2016 International conference on computing for sustainable global development (pp. 3358–3364).

  10. Muirhead, D., Imran, M. A., & Arshad, K. (2016). A survey of the challenges, opportunities and use of multiple antennas in current and future 5G small cell base stations. IEEE Access, 4, 2952–2964.

    Google Scholar 

  11. Chandrasekhar, V., Andrews, J., & Gatherer, A. (2008). Femtocell networks: A survey. IEEE Communications Magazine, 46(9), 59–67.

    Google Scholar 

  12. Suleiman, K. E., Taha, A. E. M., & Hassanein, H. S. (2016). Handover-related self-optimization in femtocells: A survey and an interaction study. Computer Communications, 73, 82–98.

    Google Scholar 

  13. Miyim, A. M., Ismail, M., & Nordin, R. (2014). Vertical handover solutions over LTE-advanced wireless networks: An overview. Wireless Personal Communications, 77(4), 3051–3079.

    Google Scholar 

  14. Chang, J., Li, Y., Feng, S., Wang, H., Sun, C., & Zhang, P. (2009). A fractional soft handover scheme for 3GPP LTE-advanced system. In 2009 IEEE international conference on communications workshops (pp. 1–5).

  15. Sipila, K., Jasberg, M., Laiho-Steffens, J., & Wacker, A. (1999). Soft handover gains in a fast power controlled WCDMA uplink. In 1999 IEEE 49th vehicular technology conference (Cat. No. 99CH36363) (Vol. 2, pp. 1594–1598).

  16. Shayea, I., Ismail, M., & Nordin, R. (2012). Advanced handover techniques in LTE-Advanced system. In 2012 International conference on computer and communication engineering (ICCCE 2012) (pp. 74–79).

  17. Márquez-Barja, J., Calafate, C. T., Cano, J. C., & Manzoni, P. (2011). An overview of vertical handover techniques: Algorithms, protocols and tools. Computer Communications, 34(8), 985–997.

    Google Scholar 

  18. Akyildiz, I. F., Gutierrez-Estevez, D. M., & Reyes, E. C. (2010). The evolution to 4G cellular systems: LTE-Advanced. Physics Communications, 3(4), 217–244.

    Google Scholar 

  19. Damnjanovic, A., et al. (2011). A survey on 3GPP heterogeneous networks. IEEE Wireless Communications, 18(3), 10–21.

    Google Scholar 

  20. Lee, Y. L., Chuah, T. C., Loo, J., & Vinel, A. (2014). Recent advances in radio resource management for heterogeneous LTE/LTE-A networks. IEEE Communications Surveys and Tutorials, 16(4), 2142–2180.

    Google Scholar 

  21. Salman, H. A., Ibrahim, L. F., & Fayed, Z. (2014). Overview of LTE-Advanced mobile network plan layout. In 2014 5th International conference on intelligent systems, modelling and simulation (pp. 585–590).

  22. Volkan, Y., Ulas, K., & Oguz, S. (2014). A new control plane for 5G network architecture with a case study on unified handoff, mobility, and routing management. IEEE Communications Magazine, 52(11), 76–85.

    Google Scholar 

  23. Tayyab, M., Gelabert, X., & Jantti, R. (2019). A survey on handover management: From LTE to NR. IEEE Access, 7(1), 118907–118930.

    Google Scholar 

  24. Stamou, A., Dimitriou, N., Kontovasilis, K., & Papavassiliou, S. (2019). Autonomic handover management for heterogeneous networks in a future internet context: A survey. IEEE Communications Surveys and Tutorials, 21(4), 3274–3297.

    Google Scholar 

  25. Ibrahim, L. F., Salman, H. A., Taha, Z. F., Akkari, N., Aldabbagh, G., & Bamasak, O. (2019). A survey on heterogeneous mobile networks planning in indoor dense areas. Personal and Ubiquitous Computing, 24(4), 487–498.

  26. Gódor, G., Jakó, Z., Knapp, Á., & Imre, S. (2015). A survey of handover management in LTE-based multi-tier femtocell networks: Requirements, challenges and solutions. Computer Networks, 76(November), 17–41.

    Google Scholar 

  27. Xenakis, D., Passas, N., Merakos, L., & Verikoukis, C. (2016). Handover decision for small cells: Algorithms, lessons learned and simulation study. Computer Networks, 100, 64–74.

    Google Scholar 

  28. Lateef, H. Y., Imran, A., Imran, M. A., Giupponi, L., & Dohler, M. (2015). LTE-advanced self-organizing network conflicts and coordination algorithms. IEEE Wireless Communications, 22(3), 108–117.

    Google Scholar 

  29. Ghosh, J. (2019). Interrelationship between energy efficiency and spectral efficiency in cognitive femtocell networks: A survey. Pervasive and Mobile Computing, 59, 101066.

    Google Scholar 

  30. Tuysuz, M. F., & Trestian, R. (2017). Energy-efficient vertical handover parameters, classification and solutions over wireless heterogeneous networks: A comprehensive survey. Wireless Personal Communications, 97(1), 1155–1184.

    Google Scholar 

  31. Basloom, S., Akkari, N., & Aldabbagh, G. (2018). Mobility management in SDN and NFV-based next-generation wireless networks: An overview and qualitative evaluation. In 1st International Conference on Advanced Research in Engineering Science (ARES) 2018 (pp. 1–8).

  32. Khan, M. A., Dang, X. T., Dörsch, T., & Peters, S. (2018). Mobility management approaches for SDN-enabled mobile networks. Annals of Telecommunications, 73(11–12), 719–731.

    Google Scholar 

  33. Sadik, M., Akkari, N., & Aldabbagh, G. (2018). SDN-based handover scheme for multi-tier LTE/Femto and D2D networks. Computer Networks, 142, 142–153.

    Google Scholar 

  34. Rizkallah, J., & Akkari, N. (2018). SDN-based vertical handover decision scheme for 5G networks. In 2018 IEEE Middle East North Africa communication conference (MENACOMM 2018) (pp. 1–6).

  35. Khoder, R., & Naja, R. (2018). Software-defined networking-based resource management in 5G HetNet. In 2018 IEEE Middle East North Africa communication conference MENACOMM 2018, no. figure 1 (pp. 1–6).

  36. GPP. (2018). LTE; evolved universal terrestrial radio access (E-UTRA) and evolved universal terrestrial radio access network (E-UTRAN); overall description; Stage 2 (Release 13),” 3rd Generation Partnership Project TS 136 300 (vol. 15.2.0, p. 375).

  37. ITU-R. (2008). Requirements related to technical performance for IMT-Advanced radio interface(s). https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2134-2008-PDF-E.pdf.

  38. GPP. (2009). LTE; evolved universal terrestrial radio access (E-UTRA) and evolved universal terrestrial radio access network (E-UTRAN); Overall description; Stage 2 (Release 8). In 3rd Generation Partnership Project TS 136 300 (Vol. 8.7.0, p. 124).

  39. GPP. (2011). LTE; evolved universal terrestrial radio access (E-UTRA) and evolved universal terrestrial radio access network (E-UTRAN); overall description; Stage 2 (Release 9), 3rd Generation Partnership Project TS 136 300, Release 9 (Vol. 9.7.0, pp. 0–181).

  40. GPP. (2011). LTE; evolved universal terrestrial radio access (E-UTRA) and evolved universal terrestrial radio access network (E-UTRAN); overall description; Stage 2 (Release 10).

  41. GPP. (2013). Evolved universal terrestrial radio access (E-UTRA) and evolved universal terrestrial radio access network (E-UTRAN); overall description; Stage 2 (Release 11). 3rd Generation Partnership Project TS 136 300 (Vol. 11.5.0, pp. 1–223).

  42. GPP. (2015). LTE; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 12), 3rd Generation Partnership Project TS 136 300 (Vol. 12.5.0, pp. 1–255) http://www.etsi.org/standards-search%5Cnhttp://portal.etsi.org/tb/status/status.asp.

  43. Saquib, N., Hossain, E., Le, L. B., & Kim, D. I. (2012). Interference management in OFDMA femtocell networks: issues and approaches. IEEE Wireless Communications, 19(3), 86–95.

    Google Scholar 

  44. de la Roche, G., Valcarce, A., Lopez-Perez, D., & Zhang, J. (2010). Access control mechanisms for femtocells. IEEE Communications Magazine, 48(1), 33–39.

    Google Scholar 

  45. Zhang, J., & de la Roche, G. (2010). Femtocells: Technologies & deployment (1st ed.). New York: Wiley.

    Google Scholar 

  46. GPP. (2012). Technical specification group radio access network; evolved universal terrestrial radio access (E-UTRA) and evolved universal terrestrial radio access network (E-UTRAN); (Release 11), 3rd Generation Partnership Project TS 36.300 (Vol. 11, p. 208).

  47. Anas, M., Calabrese, F. D., Mogensen, P. E., Rosa, C., & Pedersen, K. I. (2007). Performance evaluation of received signal strength based hard handover for UTRAN LTE. In IEEE vehicular technology conference (pp. 1046–1050).

  48. Kurjenniemi, J., & Henttonen, T. (2008). Effect of measurement bandwidth to the accuracy of inter-frequency RSRP measurements in LTE. In IEEE international symposium on personal, indoor and mobile radio communications (PIMRC).

  49. GPP. (2012). LTE; evolved universal terrestrial radio access (E-UTRA); radio resource control (RRC); protocol specification (Release 10), 3rd Generation Partnership Projec TS 136 331 (Vol. 10.7.1, p. 306).

  50. Kim, J., Lee, G., & In, H. P. (2014). Adaptive time-to-trigger scheme for optimizing LTE handover. International Journal of Control and Automation, 7(4), 35–44.

    Google Scholar 

  51. Ahmad, R., Sundararajan, E. A., Othman, N. E., & Ismail, M. (2017). Handover in LTE-advanced wireless networks: State of art and survey of decision algorithm. Telecommunication Systems, 66(3), 533–558.

    Google Scholar 

  52. Zhou, Y., & Ai, B. (2014). Handover schemes and algorithms of high-speed mobile environment: A survey. Computer Communications, 47(April), 1–15.

    Google Scholar 

  53. GPP. (2012). Telecommunication management; automatic neighbour relation (ANR) management; Concepts and requirements (Release 11), 3rd Generation Partnership Project TS 32.511 (vol. 11.2.0, p. 15).

  54. Shen, Y., Luo, T., & Win, M. Z. (2012). Neighboring cell search for LTE systems. IEEE Transactions on Wireless Communications, 11(3), 908–919.

    Google Scholar 

  55. Wanalertlak, W., Lee, B., Yu, C., Kim, M., Park, S. M., & Kim, W. T. (2011). Behavior-based mobility prediction for seamless handoffs in mobile wireless networks. Wireless Networks, 17(3), 645–658.

    Google Scholar 

  56. Watanabe, Y., Matsunaga, Y., Kobayashi, K., Sugahara, H., & Hamabe, K. (2011). Dynamic neighbor cell list management for handover optimization in LTE. In IEEE vehicular technology conference.

  57. Lopez-Perez, D., Guvenc, I., de la Roche, G., Kountouris, M., Quek, T., & Zhang, J. (2011). Enhanced intercell interference coordination challenges in heterogeneous networks. IEEE Wireless Communications, 18(3), 22–30.

    Google Scholar 

  58. Xenakis, D., Passas, N., Merakos, L., & Verikoukis, C. (2014). Mobility management for femtocells in LTE-advanced: Key aspects and survey of handover decision algorithms. IEEE Communications Surveys and Tutorials, 16(1), 64–91.

    Google Scholar 

  59. GPP. (2012). Technical specification group radio access network; evolved universal terrestrial radio access (E-UTRA); mobility enhancements in heterogeneous networks (Release 11), 3rd Generation Partnership Project TR 36.839 (Vol. 11.0.0, pp. 1–53.

  60. Li, Y., Cao, B., & Wang, C. (2016). Handover schemes in heterogeneous LTE networks: Challenges and opportunities. IEEE Wireless Communications, 23(2), 112–117.

    Google Scholar 

  61. Chang, C. W., Lin, Y. H., Jan, R. H., & Chen, C. (2012). Efficient measurement procedure for handover in LTE femtocell networks. In 2012 International conference on selected topics in mobile and wireless networking (ICOST 2012) (pp. 119–123).

  62. Preethi, G. A., Gauthamarayathirumal, P., & Chandrasekar, C. (2019). Vertical handover analysis using modified MADM method in LTE. Mobile Networks Applications, 24(4), 1139–1151.

  63. Scalable Network Technologies, QualNet Network Simulator Software, web.scalable-networks.com/qualnet-network-simulator-software.

  64. N. S, NS-3. https://www.nsnam.org/.

  65. Piro, G., Grieco, L. A., Boggia, G., Capozzi, F., & Camarda, P. (2011). Simulating LTE cellular systems: An open source framework. IEEE Transactions on Vehicular Technology, 60(2), 498–513.

    Google Scholar 

  66. Fall, K., & Varadhan, K. (2011). Ns notes and documents. The VINT Project, UC Berkeley, LBL, USC/ISI, and Xerox PARC.

  67. Moon, J., & Cho, D. (2010). Novel handoff decision algorithm in hierarchical macro/femto-cell networks. In 2010 IEEE wireless communication and networking conference (pp. 1–6).

  68. Xu, P., Fang, X., He, R., & Xiang, Z. (2013). An efficient handoff algorithm based on received signal strength and wireless transmission loss in hierarchical cell networks. Telecommunication Systems, 52(1), 317–325.

    Google Scholar 

  69. Habibzadeh, A., Moghaddam, S. S., Razavizadeh, S. M., & Shirvanimoghaddam, M. (2015). A novel handover decision-making algorithm for HetNets. In 2015 IEEE international symposium on signal processing and information technology (ISSPIT) (pp. 438–442).

  70. Venkata, R. M., Jayarekha, P., Masali, S., & Bhargavi, D. K. (2015). Effective algorithm to minimize target FAPs during hand-in and hand-off for 3GPP-LTE femtocell network. In 2015 IEEE international advance computing conference (IACC) (pp. 211–216).

  71. Aghazadeh, Y., Kalbkhani, H., Shayesteh, M. G., & Solouk, V. (2018). Cell selection for load balancing in heterogeneous. Wireless Personal Communications, 101(1), 305–323.

    Google Scholar 

  72. Bastidas-Puga, E. R., Andrade, Á. G., Galaviz, G., & Covarrubias, D. H. (2019). Handover based on a predictive approach of signal-to-interference-plus-noise ratio for heterogeneous cellular networks. IET Communications, 13(6), 672–678.

    Google Scholar 

  73. Chowdhury, M. Z., & Jang, Y. M. (2013). Handover management in high-dense femtocellular networks. EURASIP Journal on Wireless Communications and Networking, 2013(1), 6.

    Google Scholar 

  74. Lin, P., Casanova, L. F. G., & Fatty, B. K. S. (2016). Data-driven handover optimization in next generation mobile communication networks. Mobile Information Systems, 2016, 1–11.

    Google Scholar 

  75. Boujelben, M., Ben Rejeb, S., & Tabbane, S. (2017). SON handover algorithm for green LTE-A/5G HetNets. Wireless Personal Communications, 95(4), 4561–4577.

    Google Scholar 

  76. GPP. (2017). SON. Retrieved August 16, 2017, from http://www.3gpp.org/technologies/keywords-acronyms/105-son.

  77. Anandakumar, H., & Umamaheswari, K. (2017). Supervised machine learning techniques in cognitive radio networks during cooperative spectrum handovers. Cluster Computing, 20(2), 1505–1515.

    Google Scholar 

  78. Parambanchary, D., & Rao, V. M. (2020). WOA-NN: A decision algorithm for vertical handover in heterogeneous networks. Wireless Networks, 26(1), 165–180.

  79. Marshoud, H., Otrok, H., Barada, H., Estrada, R., Jarray, A., & Dziong, Z. (2016). Realistic framework for resource allocation in macro–femtocell networks based on genetic algorithm. Telecommunication Systems, 63(1), 99–110.

    Google Scholar 

  80. El Fachtali, I., Saadane, R., & ElKoutbi, M. (2016). Vertical handover decision algorithm using ants’ colonies for 4G heterogeneous wireless networks. Journal of Computer Networks and Communications, 2016, 1–15.

    Google Scholar 

  81. Ali, Z., Baldo, N., Mangues-Bafalluy, J., & Giupponi, L. (2016). Machine learning based handover management for improved QoE in LTE. In Proceedings of the NOMS 20162016 IEEE/IFIP network operations and management symposium (no. 5, pp. 794–798).

  82. Liu, C., Wei, J., Huang, S., & Cao, Y. (2012). A distance-based handover scheme for femtocell and macrocell overlaid networks. In 2012 8th International conference on wireless communications, networking and mobile computing (pp. 1–4).

  83. Sung, N. W., Pham, N. T., Yoon, H., Lee, S., & Hwang, W. J. (2013). Base station association schemes to reduce unnecessary handovers using location awareness in femtocell networks. Wireless Networks, 19(5), 741–753.

    Google Scholar 

  84. Bilen, T., Duong, T. Q., & Canberk, B. (2016). Optimal eNodeB estimation for 5G intra-macrocell handover management. In Proceedings of the 12th ACM symposium on QoS and security for wireless and mobile networksQ2SWinet’16 (pp. 87–93).

  85. Ahmad, R., Sundararajan, E. A., Othman, N. E., & Ismail, M. (2017). An efficient handover decision in heterogeneous LTE-A networks under the assistance of users’ profile. Telecommunications Systems, 68(1), 27–45.

  86. Ahmad, R., Ismail, R., Sundararajan, E. A., Othman, N. E., & Zain, A. M. (2017). Performance of movement direction distance-based vertical handover algorithm under various femtocell distributions in HetNet. In 13th IEEE Malaysia international conference on communications (MICC) (pp. 265–270).

  87. Kalbkhani, H., Jafarpour-Alamdari, S., Shayesteh, M. G., & Solouk, V. (2018). QoS-based multi-criteria handoff algorithm for femto-macro cellular networks. Wireless Personal Communications, 98(1), 1435–1460.

    Google Scholar 

  88. Ulvan, A., Bestak, R., & Ulvan, M. (2011). Handover procedure and decision strategy in LTE-based femtocell network. Telecommunication Systems, 52(4), 2733–2748.

    Google Scholar 

  89. Maheswari, A., Prithiviraj, A., & Krishnamoorthy, K. (2016). Markov based VHO to improve the Handover performance among heterogeneous wireless networks in PMIPv6 domain. In 2016 International conference on circuit, power and computing technologies (ICCPCT) (pp. 1–6).

  90. Bao, X., Adjardjah, W., Okine, A., Zhang, W., & Bao, N. (2018). Vertical handover scheme for enhancing the QoE in VLC heterogeneous networks. In 2018 IEEE/CIC international conference on communications China, ICCC (pp. 437–442).

  91. Balouch, S. F., Ilyas Ahmad, M. (2019). A Markov-based framework for handover process in heteroegenous cellular networks,” 2019 2nd International conference on computing, mathematics and engineering technologies (iCoMET 2019) (pp. 1–11).

  92. Jeong, B., Shin, S., Jang, I., Sung, N. W., & Yoon, H. (2011). A smart handover decision algorithm using location prediction for hierarchical macro/femto-cell networks. In 2011 IEEE vehicular technology conference (VTC Fall), 2011 (pp. 1–5).

  93. Hasan, M. M., Kwon, S., & Oh, S. (2019). Frequent-handover mitigation in ultra-dense heterogeneous networks. IEEE Transactions on Vehicular Technology, 68(1), 1035–1040.

    Google Scholar 

  94. Shi, R., Peng, Y., & Zhang, L. (2019).A user mobility prediction method to reduce unnecessary handover for ultra dense network. In 2019 28th Wireless and Optical Communications Conference (WOCC 2019)Proceedings, WOCC (pp. 1–5).

  95. Wu, C. S., Chu, Y. S., & Fang, C. H. (2013). The periodic scan and velocity decision handover scheme for next generation femtocell/macrocell overlay networks. In International conference on ICT convergence (pp. 201–206).

  96. Ben Gharbia, M., & Bouallegue, R. (2018).Handover decision algorithm in femtocell long term evolution networks. In 2018 Seventh international conference on communications and networking (ComNet) (pp. 1–6).

  97. Rajabizadeh, M., & . Abouei, M. (2015).An efficient femtocell-to-femtocell handover decision algorithm in LTE femtocell networks. In ICEE 2015Proceedings of the 23rd Iran conference on electrical engineering (Vol. 10, pp. 213–218).

  98. Open Networking Foundation, SDN Architecture Overview, 2014.

  99. Prados-Garzon, J., Hinojosa, O., Ameigeiras, P., Ramos-Munoz, J. J., Andres-Maldonado, P., & Lopez-Soler, J. M. (2016). Handover implementation in a 5G SDN-based mobile network architecture. In IEEE international symposium personal indoor mobile radio communications (PIMRC).

  100. Fondo-Ferreiro, P., Mhiri, S., Lopez-Bravo, C., Gonzalez-Castano, F. J., & Gil-Castineira, F. (2019). Fast decision algorithms for efficient access point assignment in SDN-controlled wireless access networks. IEEE Transactions on Network and Service Management (Vol. XX, No. X, pp. 1–13).

  101. Chuang, M. C., Liu, J. H., Lin, C. M.,& Chen, C. L. (2019) STASH: SDN-based trajectory-aware seamless handover scheme with multiple antennas in ultra-dense smallcell networks. IEEE region 10 annual international conference, Proceedings/TENCON (Vol. 2018, pp. 1295–1300).

  102. Kuklinski, S., Li, Y., & Dinh, K. T. (2014). Handover management in SDN-based mobile networks. 2014 IEEE GLOBECOM work (GC Workshops 2014) (pp. 194–200).

  103. Khalifeh, A., Aldahdouh, K. A., Darabkh, K. A., & Al-Sit, W. (2019). A survey of 5G emerging wireless technologies featuring LoRaWAN, Sigfox, NB-IoT and LTE-M. In 2019 International conference on wireless communications signal processing and networking (WiSPNET), Chennai, India (pp. 561–566).

Download references

Acknowledgements

This work is supported in part by NATO—North Atlantic Treaty Organization, under the SPS Grant G4936″SONiCS: Hybrid Sensor Network for Emergency Critical Scenarios.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Ahmad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, R., Sundararajan, E.A. & Khalifeh, A. A survey on femtocell handover management in dense heterogeneous 5G networks. Telecommun Syst 75, 481–507 (2020). https://doi.org/10.1007/s11235-020-00718-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-020-00718-1

Keywords

Navigation