iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s11228-020-00566-w
The ABC of DC Programming | Set-Valued and Variational Analysis Skip to main content
Log in

The ABC of DC Programming

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

A function is called DC if it is expressible as the difference of two convex functions. In this work, we present a short tutorial on difference-of-convex optimization surveying and highlighting some important facts about DC functions, optimality conditions, and recent algorithms. The manuscript, accessible to a wide range of readers familiar with the convex analysis machinery, builds upon three pillars from variational analysis: directional derivative, ε-subdifferential, and the Legendre-Fenchel transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Le Thi, H.A., Tao, P.D.: DC programming and DCA: thirty years of developments. Math. Program. 169(1), 5–68 (2018)

    Article  MathSciNet  Google Scholar 

  2. Toland, J.F.: Duality in nonconvex optimization. J. Math. Anal. Appl. 66(2), 399–415 (1978)

    Article  MathSciNet  Google Scholar 

  3. Hiriart-Urruty, J., Ponstein, J.: Generalized differentiability/duality and optimization for problems dealing with differences of convex functions. In: Convexity and Duality in Optimization: Proceedings of the Symposium on Convexity and Duality in Optimization Held at the University of Groningen, The Netherlands June 22, 1984, pp 37–70. Springer, Berlin (1985)

  4. Bomze, I.M., Lemaréchal, C.: Necessary conditions for local optimality in difference-of-convex programming. Journal of Convex Analysis 17(2), 673–680 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Pang, J.S., Razaviyayn, M., Alvarado, A.: Computing B-stationary points of nonsmooth DC programs. Math. Oper. Res. 42(1), 95–118 (2017)

    Article  MathSciNet  Google Scholar 

  6. Joki, K., Bagirov, A.M., Karmitsa, N., Mäkelä, M.M., Taheri, S.: Double bundle method for finding Clarke stationary points in nonsmooth DC programming. SIAM J. Optim. 28(2), 1892–1919 (2018)

    Article  MathSciNet  Google Scholar 

  7. Aragón Artacho, F., Fleming, R.M.T., Vuong, P.T.: Accelerating the DC algorithm for smooth functions. Math. Program. 169(1), 95–118 (2018)

    Article  MathSciNet  Google Scholar 

  8. Aragón Artacho, F.J., Vuong, P.T.: The boosted difference of convex functions algorithm for nonsmooth functions. SIAM J. Optim. 30(1), 980–1006 (2020)

    Article  MathSciNet  Google Scholar 

  9. de Oliveira, W., Tcheou, M.P.: An inertial algorithm for DC programming. Set-Valued and Variational Analysis 27(4), 895–919 (2019)

    Article  MathSciNet  Google Scholar 

  10. Banert, S., Bot, R.I.: A general double-proximal gradient algorithm for d.c. programming. Math. Program. 178(1-2), 301–326 (2019)

    Article  MathSciNet  Google Scholar 

  11. Gaudioso, M., Giallombardo, G., Miglionico, G., Bagirov, A.M.: Minimizing nonsmooth DC functions via successive DC piecewise-affine approximations. J. Glob. Optim. 71(1), 37–55 (2018)

    Article  MathSciNet  Google Scholar 

  12. de Oliveira, W.: Sequential difference-of-convex programming. J. Optim. Theory Appl. 186(3), 936–959 (2020)

    Article  MathSciNet  Google Scholar 

  13. Neto, J.X.C., Oliveira, P.R., Soubeyran, A., Souza, J.C.O.: A generalized proximal linearized algorithm for DC functions with application to the optimal size of the firm problem. Ann. Oper. Res. 289(2), 313–339 (2020)

    Article  MathSciNet  Google Scholar 

  14. Tuy, H.: Convex Analysis and Global Optimization, Nonconvex Optimization and its Applications, vol. 22. Springer, Berlin (2016)

    MATH  Google Scholar 

  15. Bagirov, A.M., Gaudioso, M., Karmitsa, N., Mäkelä, M.M., Taheri, S.: Numerical Nonsmooth Optimization: State of the Art Algorithms, Operations Research Mathematical Programming, vol. 1. Springer, Cham (2020)

    Book  Google Scholar 

  16. Bačák, M., Borwein, J.M.: On difference convexity of locally Lipschitz functions. Optimization 60(8-9), 961–978 (2011)

    Article  MathSciNet  Google Scholar 

  17. Bigi, G., Frangioni, A., Zhang, Q.: Beyond canonical dc-optimization: the single reverse polar problem. J. Optim. Theory Appl. 155, 430–452 (2012)

    Article  MathSciNet  Google Scholar 

  18. vom Dahl, S., Löhne, A.: Solving polyhedral d.c. optimization problems via concave minimization. J. Glob. Optim. 78(1), 37–47 (2020)

    Article  MathSciNet  Google Scholar 

  19. Barratt, S., Angeris, G., Boyd, S.: Minimizing a sum of clipped convex functions. Optim Lett 14, 2443–2459 (2020)

    Article  MathSciNet  Google Scholar 

  20. van Ackooij, W., de Oliveira, W.: Non-smooth DC-constrained optimization: constraint qualification and minimizing methodologies. Optimization Methods and Software 34(4), 890–920 (2019)

    Article  MathSciNet  Google Scholar 

  21. Rockafellar, R., Wets, R.J.B.: Variational Analysis, Grundlehren der mathematischen Wissenschaften, 3rd edn., vol. 317. Springer, Berlin (2009)

    Google Scholar 

  22. van Ackooij, W., de Oliveira, W.: Nonsmooth and nonconvex optimization via approximate difference-of-convex decompositions. J. Optim. Theory Appl. 182(1), 49–80 (2019)

    Article  MathSciNet  Google Scholar 

  23. Rockafellar, R.: Convex Analysis, 1st edn. Princeton University Press, Princeton (1970)

    Book  Google Scholar 

  24. Nesterov, Y.: Introductory Lectures on Convex Optimization. A Basic Course, Applied Optimization, vol. 87. Springer Science, Berlin (2004)

    Book  Google Scholar 

  25. Clarke, F.: Optimisation and nonsmooth analysis. Classics in applied mathematics society for industrial and applied mathematics (1990)

  26. Hiriart-Urruty, J., Lemaréchal, C.: Convex Analysis and Minimization Algorithms II. 2 edn, No. 306 in Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1996)

  27. Hiriart-Urruty, J., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I, 2nd edn. Springer, Berlin (1996)

    MATH  Google Scholar 

  28. Dür, M.: A parametric characterization of local optimality. Mathematical Methods of Operations Research 57, 101–109 (2003)

    Article  MathSciNet  Google Scholar 

  29. Aragón Artacho, F.J., Campoy, R., Vuong, P.T.: Using positive spanning sets to achieve d-stationarity with the boosted DC algorithm. Vietnam J. Math. 48(2), 363–376 (2020)

    Article  MathSciNet  Google Scholar 

  30. Tao, P.D., Le Thi, H.A.: Convex analysis approach to DC programming: theory, algorithms and applications. Acta Mathematica Vietnamica 22(1), 289–355 (1997)

    MathSciNet  MATH  Google Scholar 

  31. Joki, K., Bagirov, A.M., Karmitsa, N., Mäkelä, M.M.: A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes. Journal of Global Optimization 68(3), 501–535 (2017)

    Article  MathSciNet  Google Scholar 

  32. Montonen, O., Joki, K.: Bundle-based descent method for nonsmooth multiobjective DC optimization with inequality constraints. J. Glob. Optim. 72(3), 403–429 (2018)

    Article  MathSciNet  Google Scholar 

  33. de Oliveira, W.: Proximal bundle methods for nonsmooth DC programming. J. Glob. Optim. 75(2), 523–563 (2019)

    Article  MathSciNet  Google Scholar 

  34. Souza, J.C.O., Oliveira, P.R., Soubeyran, A.: Global convergence of a proximal linearized algorithm for difference of convex functions. Optim. Lett. 10(7), 1529–1539 (2016)

    Article  MathSciNet  Google Scholar 

  35. Rakotomamonjy, A., Flamary, R., Gasso, G.: DC Proximal Newton for nonconvex optimization problems. IEEE Transactions on Neural Networks and Learning Systems 27(3), 636–647 (2016)

    Article  MathSciNet  Google Scholar 

  36. Hiriart-Urruty, J.: How to regularize a difference of convex functions. J. Math. Anal. Appl. 162, 196–209 (1991)

    Article  MathSciNet  Google Scholar 

  37. Beck, A., Hallak, N.: On the convergence to stationary points of deterministic and randomized feasible descent directions methods. SIAM J. Optim. 30 (1), 56–79 (2020)

    Article  MathSciNet  Google Scholar 

  38. Strekalovsky, A.S.: Local search for nonsmooth DC optimization with DC equality and inequality constraints. In: Bagirov, A. M., Gaudioso, M., Karmitsa, N., Mäkelä, M. M., Taheri S. (eds.) Numerical Nonsmooth Optimization, pp 229–261. Springer International Publishing, Berlin (2020). https://doi.org/10.1007/978-3-030-34910-3_7

  39. Montonen, O., Joki, K.: Multiobjective double bundle method for DC optimization. In: Bagirov, A. M., Gaudioso, M., Karmitsa, N., Mäkelä, M. M., Taheri S. (eds.) Numerical Nonsmooth Optimization, pp 481–497. Springer International Publishing, Berlin (2020). https://doi.org/10.1007/978-3-030-34910-3_14

  40. van Ackooij, W., Demassey, S., Javal, P., Morais, H., de Oliveira, W., Swaminathan, B.: A bundle method for nonsmooth DC programming with application to chance-constrained problems. Optimization Online (7603), 1–26. http://www.optimization-online.org/DB_HTML/2020/02/7603.html (2020)

Download references

Acknowledgements

The author thanks the editors of this special issue for their kind invitation, and two anonymous reviewers for their valuable remarks and careful reading. The author also acknowledges financial support from the Gaspard-Monge Program for Optimization and Operations Research (PGMO) project “Models for planning energy investment under uncertainty”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Welington de Oliveira.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, W. The ABC of DC Programming. Set-Valued Var. Anal 28, 679–706 (2020). https://doi.org/10.1007/s11228-020-00566-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-020-00566-w

Keywords

Mathematics Subject Classification (2010)

Navigation