iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s11227-018-2612-2
An efficient algorithm for embedding exchanged hypercubes into grids | The Journal of Supercomputing Skip to main content
Log in

An efficient algorithm for embedding exchanged hypercubes into grids

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Graph embedding is an important technology in simulating parallel structures and designing VLSI layout. Hypercube is one of the most significant interconnection networks in parallel computing systems. The exchanged hypercube is an important variant of the hypercube, which is obtained by systematically deleting edges from a hypercube. It not only retains several valuable and desirable properties of the hypercube, but also has lower hardware cost. In this paper, we first give an exact formula of minimum wirelength of exchanged hypercube layout into a grid. Furthermore, we propose an O(N) algorithm for embedding exchanged hypercube into a gird with load 1, expansion 1 and minimum wirelength and derive a linear layout of exchanged hypercube with minimum number of tracks and efficient layout areas. Finally, we present simulation experiments of our embedding algorithm on network overhead and total wirelength, which conduce to estimate the total wirelength and chip area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arabnia HR, Oliver MA (1986) Fast operations on raster images with SIMD machine architectures. Int J Eurographics Assoc (Comput Graph Forum) 5(3):179–189

    Article  Google Scholar 

  2. Valafar H, Arabnia HR, Williams G (2004) Distributed global optimization and its development on the multiring network. Int J Neural Parallel Sci Comput (Dynamic Publishers) 12(4):465–490

    MathSciNet  MATH  Google Scholar 

  3. Hamid R, Arabnia A (1990) Parallel algorithm for the arbitrary rotation of digitized images using process-and-data-decomposition approach. J Parallel Distrib Comput 10(2):188–193

    Article  Google Scholar 

  4. Hamid R Arabnia (1995) A distributed stereocorrelation algorithm. In: Proceedings of Fourth International Conference on IEEE Computer Communications and Networks, INSPEC Accession Number 5557991, pp 479–482

  5. Arabnia Hamid R, Bhandarkar SM (1996) Parallel stereocorrelation on a reconfigurable multi-ring network. J Supercomput 10(3):243–270 (Special Issue on Parallel and Distributed Processing)

    Article  MATH  Google Scholar 

  6. Arabnia HR, Taha TR (1998) A parallel numerical algorithm on a reconfigurable multi-ring network. J Telecommun Syst 10:185–203

    Article  Google Scholar 

  7. Bhandarkar SM (1997) Parallel computer vision on a reconfigurable multiprocessor network. IEEE Trans Parallel Distrib Syst 8(3):292–310

    Article  Google Scholar 

  8. Manuel P, Rajasingh I, Rajan B (2009) Exact wirelength of hypercubes on a grid. Discrete Appl Math 157(7):1486–1495

    Article  MathSciNet  MATH  Google Scholar 

  9. Yeh C-H, Varvarigos EA, Parhami B (2000) Multilayer VLSI layout for interconnection networks. In: Proceedings of the International Conference on Parallel Processing, pp 33–40

  10. Singh SP, Sharma RRK (2006) A review of different approaches to the facility layout problems. Int J Adv Manuf Technol 30(5–6):425–433

    Article  Google Scholar 

  11. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. Freeman, San Francisco

  12. Nakano K (2003) Linear layout of generalized hypercubes. Int J Found Comput Sci 14(01):137–156

    Article  MathSciNet  MATH  Google Scholar 

  13. Arockiaraj M, Abraham J, Quadras J (2017) Linear layout of locally twisted cubes. Int J Comput Math 94(1):56–65

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu YL (2015) Routing and wavelength assignment for exchanged hypercubes in linear array optical networks. Inf Process Lett 115(2):203–208

    Article  MathSciNet  MATH  Google Scholar 

  15. Yu C, Yang X (2012) Routing and wavelength assignment for 3-ary \(n\)-cube in array-based optical network. Inf Process Lett 112(6):252–256

    Article  MathSciNet  MATH  Google Scholar 

  16. Bezrukov SL, Chavez JD, Harper LH, Röttger M, Schroeder UP (1998) Embedding of hypercubes into grids. In: Brim L, Gruska J, Zlatuška J (eds) International Symposium on Mathematical Foundations of Computer Science, vol 1450. Springer, Berlin, Heidelberg, pp 693–701

  17. Bezrukov SL, Chavez JD, Harper LH (2000) The congestion of \(n\)-cube layout on a rectangular grid. Discrete Math 213(1–3):13–19

    Article  MathSciNet  MATH  Google Scholar 

  18. Abraham J, Arockiaraj M (2017) Optimal embedding of locally twisted cubes into grids. In: Proceedings of International Conference on Springer Algorithms and Discrete Applied Mathematics, pp 1–11

  19. Han Z, Li Y, Li J (2018) A novel routing algorithm for IoT cloud based on hash offset tree. Future Gener Comput Syst 86:456–463

    Article  Google Scholar 

  20. Xiang D, Chakrabarty K, Fujiwara H (2016) Multicast-based testing and thermal-aware test scheduling for 3D ICs with a stacked network-on-chip. IEEE Trans Comput 65(9):2767–2779

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang X, Fan J, Jia X (2011) Embedding meshes into twisted-cubes. Inf Sci 181(14):3085–3099

    Article  MathSciNet  MATH  Google Scholar 

  22. Han Y, Fan J, Zhang S, Yang J, Qian P (2010) Embedding meshes into locally twisted cubes. Inf Sci 180(19):3794–3805

    Article  MathSciNet  MATH  Google Scholar 

  23. Lv YL, Lin C-K, Fan JX (2017) Hamiltonian cycle and path embeddings in \(k\)-ary \(n\)-cubes based on structure faults. Comput J 60(2):159–179

    MathSciNet  Google Scholar 

  24. Wang X, Fan J, Jia X, Zhang S, Yu J (2011) Embedding meshes into twisted-cubes. Inf Sci 181(14):3085–3099

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhou DF, Fan JX, Lin C-K, Cheng BL, Zhou JY, Liu Z (2017) Optimal path embedding in the exchanged crossed cube. J Comput Sci Technol 32(3):618–629

    Article  MathSciNet  Google Scholar 

  26. Fan J, Jia X (2007) Embedding meshes into crossed cubes. Inf Sci 177(15):3151–3160

    Article  MATH  Google Scholar 

  27. Fan J, Jia X, Lin X (2008) Embedding of cycles in twisted cubes with edge-pancyclic. Algorithmica 51(3):264–282

    Article  MathSciNet  MATH  Google Scholar 

  28. Fan J, Jia X, Lin X (2006) Complete path embeddings in crossed cubes. Inf Sci 176(22):3332–3346

    Article  MathSciNet  MATH  Google Scholar 

  29. Loh PKK, Hsu WJ, Pan Y (2005) The exchanged hypercube. IEEE Trans Parallel Distrib Syst 16(9):866–874

    Article  Google Scholar 

  30. Ma M, Liu B (2009) Cycles embedding in exchanged hypercubes. Inf Process Lett 110(2):71–76

    Article  MathSciNet  MATH  Google Scholar 

  31. Ma M, Zhu L (2011) The super connectivity of exchanged hypercubes. Inf Process Lett 111(8):360–364

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang Z, Deng Y, Min G, Xie J, Huang S (2017) ExCCC-DCN: a highly scalable, cost-effective and energy-efficient data center structure. IEEE Trans Parallel Distrib Syst 28(4):1046–1060

    Article  Google Scholar 

  33. Thompson CD (1980 Aug) A complexity theory for VLSI. Ph.D. thesis, Carnegie-Mellon University

  34. Bezrukov SL, Das SK, Elsasser R (2000) An edge-isoperimetric problem for powers of the Petersen graph. Ann Comb 4(2):153–169

    Article  MathSciNet  MATH  Google Scholar 

  35. Tsai T-H, Chen Y-C, Tan JJM (2016) Optimal edge congestion of exchanged hypercubes. IEEE Trans Parallel Distrib Syst 27(1):250–262

    Article  Google Scholar 

  36. Katseff H (1988) Incomplete hypercubes. IEEE Trans Comput 37:604–608

    Article  Google Scholar 

  37. Harper LH (2004) Global methods for combinatorial isoperimetric problems. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  38. Boals AJ, Gupta AK, Sherwani NA (1994) Incomplete hypercubes: algorithms and embeddings. J Supercomput 8(3):263–294

    Article  Google Scholar 

  39. Yang X, David JE, Graham M (2005) Maximum induced subgraph of a recursive circulant. Inf Process Lett 95(1):293–298

    Article  MathSciNet  MATH  Google Scholar 

  40. Aroca JA, Anta AF (2014) Bisection (band) width of product networks with application to data centers. IEEE Trans Parallel Distrib Syst 25(3):570–580

    Article  Google Scholar 

  41. Massie ML, Chun BN, Culler DE (2004) The ganglia distributed monitoring system: design, implementation, and experience. Parallel Comput 30(7):817–840

    Article  Google Scholar 

  42. Zhang J, Yang X, Yu C, Li H, Yang L (2013) Implementing duplex crossed cube communication patterns on optical linear arrays. Optik Int J Light Electron Opt 124(24):6496–6500

    Article  Google Scholar 

  43. Glantz R, Meyerhenke H (2015) Algorithms for mapping parallel processes onto grid and torus architectures. In: proceedings of International Conference on IEEE 23rd Euromicro Parallel, Distributed and Network-Based Processing (PDP), pp 236–243

Download references

Acknowledgements

We would like to express our sincerest appreciation to Prof. Guoliang Chen for his constructive suggestions. This work is supported by National Key R&D Program of China (No. 2018YFB1003201), Natural Science Foundation of China under Grant (Nos. 61572337, 61602333, 61672296, 61702351 and 61872196), Scientific & Technological Support Project of Jiangsu Province (No. BE2016777, BE2016185), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Nos. 17KJB520036 and 18KJA520009) and Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks Foundation (No. WSNLBKF201701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxi Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, W., Fan, J., Lin, CK. et al. An efficient algorithm for embedding exchanged hypercubes into grids. J Supercomput 75, 783–807 (2019). https://doi.org/10.1007/s11227-018-2612-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-018-2612-2

Keywords

Navigation