iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s11227-016-1646-6
A GPU implementation of secret sharing scheme based on cellular automata | The Journal of Supercomputing Skip to main content
Log in

A GPU implementation of secret sharing scheme based on cellular automata

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Secret sharing (SS) schemes based on cellular automata (CA) are considered as secure encrypting algorithms, where several secret data can be shared among some persons. Recently the SS schemes can be applied to solve real-world problems, such as security in cloud computing. The principal obstacle of use of the SS scheme is its considerably high computational cost; especially if a large amount of secret data must be encrypted and shared. In this work, we propose a parallel CA-based SS scheme suitable for any kinds of digital data in the graphic processing unit using compute unified device architecture technology. The uses of global memory and shared memory are analyzed from computational effectiveness and security points of view. The experimental results show the proposed parallel implementation provides a speedup rate more than 18-fold compared with its sequential implementation. Also we show the increase of the security level of the parallel implementation with respect to the sequential implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Alvarado R, Tapia J, Rolon J (2014) Medical image segmentation with deformable models on graphics processing units. J Supercomput 68(1):339–364

    Article  Google Scholar 

  2. Alvarez G, Encinas LH, Martn del Rey A (2008) A multisecret sharing scheme for color images based on cellular automata. Inf Sci 178:4382–4395

  3. Agosta G, Barenghi A, De Santis F, Pelosi G (2014) Record setting software implementation of DES using CUDA. In: Proceeding of International conference on information technology, pp 748–755

  4. Blakley G (1979) Safeguarding cryptographic keys, National Conference on AFIPS

  5. Blecic I, Cecchini A, Trunfio GA (2013) Cellular automata simulation of urban dynamics through GPGPU. J Supercomput 65:614–629

    Article  Google Scholar 

  6. Campos RS, Lobosco M, Dos Santos RW (2014) A GPU-based heart simulator with mass-spring systems and cellular automaton. J Supercomput 69:1–8

    Article  Google Scholar 

  7. Cano A, Olmo JL, Ventura S (2013) Parallel multi-objective ant programming for classification. J Parallel Distrib Comput 73:713–728

    Article  Google Scholar 

  8. Cesnovar R, Risojevic V, Babic Z, Dobravec T, Bulic P (2013) A GPU implementation of a structural-similarity-based aerial-image classification. J Supercomput 65:978–996

    Article  Google Scholar 

  9. Chang CC, Hsieh YP, Lin CH (2008) Sharing secrets in stego images with authentication. Pattern Recognit 41:3130–3137

    Article  MATH  Google Scholar 

  10. Delignnidis L, Arabria HR (2014) Parallel video processing techniques for surveillance applications. In: Proceeding of international conference on computational science and computational intelligence, pp 183–189

  11. Fan W, Chen X, Li X (2010) Parallelization of RSA algorithm based on Compute Unified Devoce Architecture. In: Proceeding of International conference on grid and cloud computing, pp 174–178

  12. Ferreiro AM, Garcia JA, Lopez-Salas JG, Vazquez C (2013) An Efficient implementation of parallel simulated annealing algorithm in GPUs. J Glob Optim 57:863–890

    Article  MathSciNet  MATH  Google Scholar 

  13. FIPS 140-2 (2001) Security requierments for cryptographic modules, Federal Information Processing Standard Publication 140-1, US department of Commerce/National Institute of Standards and Technology, pp 1–61. http://www.nist.gov/cmvp

  14. Ganguly N, Maji P, Sikdar BK, Chaudhuri PP (2004) Design and characterization of cellular automata based associative memory for pattern recognition. IEEE Trans Syst Man Cybern 34(1):672–679

    Article  Google Scholar 

  15. Jian L, Wang C, Liu Ying, Liang S, Yi Weidong, Si Y (2013) Parallel data mining techniques on Graphics processing unit with compute unified device architecture (CUDA). J Supercomput 64:942–967

    Article  Google Scholar 

  16. Jin J, Wu ZH (2012) A secret image sharing based on neighborhood configurations of \(2-\)D cellular automata. Optics Laser Technol 44:538–548

    Article  Google Scholar 

  17. Jo H, Hong ST, Chang JW, Choi DH (2014) Offloading data encryption to GPU in database systems. J Supercomput 69:375–394

    Article  Google Scholar 

  18. Lastra M, Carabao J, Gutierrez PD, Benitez JM, Herrera F (2015) Fast fingerprint identification using GPUs. Inf Sci 301:195–214

    Article  Google Scholar 

  19. Lin CC, Tsai W-H (2004) Secret image sharing with steganography and authentication. J Syst Softw 73:405–414

    Article  Google Scholar 

  20. Marti A, Rodri G (2011) Reversibility of linear cellular automata. Appl Math Comput 217(21):8360–8366

    Article  MathSciNet  MATH  Google Scholar 

  21. Moore G (1975) Progress in digital integrated electronics. Proc Int Conf IEEE Electr Devices Meet 21:11–13

    Google Scholar 

  22. Mora Juan Carlos Seck Tuoh (2002) Matrix methods and local properties of reversible one-dimensional cellular automata. J Phys A Math Gen 35(27):5563

    Article  MathSciNet  MATH  Google Scholar 

  23. Mora Juan Carlos Seck Tuoh et al (2005) Procedures for calculating reversible one-dimensional cellular automata. Phys D Non-linear Phenom 202(1):134–141

    Article  MathSciNet  MATH  Google Scholar 

  24. Ping P, Xu Feng, Wang ZJ (2014) Image encryption based on non-affine and balanced cellular automata. Signal Process 105:419–429

    Article  Google Scholar 

  25. Quesada P, Heras DB, Argello F (2012) Efficient GPU asynchronous implementation of a Watershed algorithm based on cellular automata. In: Proceeding of IEEE international symposium on parallel and distributed processing with applications, pp 79–86

  26. Rosin PL (2006) Training cellular automata for image processing. IEEE Trans Image Process 15(7):2076–2087

    Article  Google Scholar 

  27. Rukhin A, Soto J, Nechvatal J, Miles S, Barker E, Leigh S, Levenson M, Van gel M, Banks D, Heckert A, Dray J, Vo S (2010) A statistical test suite for random and pseudorandom number generators for cryptographic applications, NIST Special Publication 800-22 Revision 1a

  28. Shamir A (1979) How to share a secret. Commun ACM 22:612–613

    Article  MathSciNet  MATH  Google Scholar 

  29. Song Z, Chen Z, Shi R (2015) Fast MAP-based super-resolution image reconstruction on GPU-CUDA. Commun Comput Inf Sci 482:170–178

    Article  Google Scholar 

  30. Thorpe C, Li F, Li Z, Yu Z, Sauders D, Yu J (2013) A coprime blur scheme for data security in video surveillance. IEEE Trans Pattern Anal Mach Intell 35(12):3066–3072

    Article  Google Scholar 

  31. Toffoli T, Margolus N (1990) Invertible cellular automata: a review. Phys D 45:229–253

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariko Nakano-Miyatake.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernandez-Becerril, R.A., Bucio-Ramirez, A.G., Nakano-Miyatake, M. et al. A GPU implementation of secret sharing scheme based on cellular automata. J Supercomput 72, 1291–1311 (2016). https://doi.org/10.1007/s11227-016-1646-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-016-1646-6

Keywords

Navigation