iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s11225-006-6603-6
Gentzen Calculi for the Existence Predicate | Studia Logica Skip to main content
Log in

Gentzen Calculi for the Existence Predicate

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

We introduce Gentzen calculi for intuitionistic logic extended with an existence predicate. Such a logic was first introduced by Dana Scott, who provided a proof system for it in Hilbert style. We prove that the Gentzen calculus has cut elimination in so far that all cuts can be restricted to very simple ones. Applications of this logic to Skolemization, truth value logics and linear frames are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baaz, M., and R. Iemhoff, ‘Skolemization in intuitionistic logic’, Submitted, 2005.

  2. Beckmann, A., and N. Preining, ‘Linear Kripke Frames and Gödel Logics’, Submitted, 2005.

  3. Beeson, M., Foundations of Constructive Mathematics, Springer, Berlin, 1985.

    Google Scholar 

  4. Corsi, G., ‘A cut-free calculus for Dummett's LC quantified’, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 35 (1989), 289–301.

    Google Scholar 

  5. Corsi, G., ‘A logic characterized by the class of connected models with nested domains’, Studia Logica 48, No. 1 (1989), 15–22.

  6. Corsi, G., ‘Completeness theorem for Dummett's LC quantified and some of its extensions’, Studia Logica 51, No. 2 (1992), 317–335.

    Article  Google Scholar 

  7. Gentzen, G., ‘Untersuchungenüber das logische Schliessen.’ I., Math. Z., vol. 39 (1934), 176–210.

    Google Scholar 

  8. Gentzen, G., ‘Untersuchungenüber das logische Schliessen.’ II., Math. Z., vol. 39 (1934), 405–431.

    Google Scholar 

  9. Heyting, A., ‘Die formalen regeln der intuitionistische Mathematik’ II, Sitzungsberichte der Preussischen Akademie von Wissenschaften. Physikalisch-mathematische Klasse, 1930, 57–71.

  10. Iemhoff, R., ‘A note on linear Kripke models’, Journal of Logic and Computation, 2005, to appear.

  11. Mints, G. E., ‘Axiomatization of a Skolem function in intuitionistic logic’, in Faller M. et al., (eds.), Formalizing the dynamics of information, CSLI Lect. Notes 91, 2000, 105–114.

  12. Preining, N., Complete Recursive Axiomatizability of Godel Logics, PhD-thesis, Technical University Vienna, 2003.

  13. Scott, D. S., ‘Identity and existence in intuitionistic logic’, in Fourman et al., (eds.), Applications of sheaves, Proc. Res. Symp. Durham 1977, Lect. Notes Math. 753, 1979, 660–696.

  14. Takano, M., ‘Another proof of the strong completeness of the intuitionistic fuzzy logic’, Tsukuba J. Math. 11, No. l, 1987, 101–105.

    Google Scholar 

  15. Takeuti, G. and M. Titani, ‘Intuitionistic fuzzy logic and intuitionistic fuzzy set theory’, Journal of Symbolic Logic 49 (1984), 851–866.

    Google Scholar 

  16. Troelstra, A. S., and D. Van Dalen, Constructivism in Mathematics, vol. I North-Holland, 1988.

  17. Troelstra, A. S., and H. Schwichtenberg, Basic Proof Theory, Cambridge Tracts in Theoretical Computer Science 43, Cambridge University Press, 1996.

  18. Unterhalt, M., Kripke-Semantik mit partieller Existenz, PhD-thesis, University of Münster, 1986.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Baaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baaz, M., Iemhoff, R. Gentzen Calculi for the Existence Predicate. Stud Logica 82, 7–23 (2006). https://doi.org/10.1007/s11225-006-6603-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-006-6603-6

Keywords

Navigation