Abstract
Let \(\mathbb{F}_{q}\) be a finite field, and let b and N be integers. We prove explicit estimates for the probability that the number of rational points on a randomly chosen elliptic curve E over \(\mathbb{F}_{q}\) equals b modulo N. The underlying tool is an equidistribution result on the action of Frobenius on the N-torsion subgroup of E. Our results subsume and extend previous work by Achter and Gekeler.
Similar content being viewed by others
References
Achter, J.: The distribution of class groups of function fields. J. Pure Appl. Algebra 204(2), 316–333 (2006)
Achter, J.: Results of Cohen–Lenstra type for quadratic function fields. In: Lauter, K., Ribet, K. (eds.) Computational Arithmetic Geometry. Contemporary Mathematics, vol. 463, pp. 1–8. American Mathematical Society, Providence (2008)
Achter, J., Sadornil, D.: On the probability of having rational ℓ-isogenies. Arch. Math. 90, 511–519 (2008)
Birch, B.: How the number of points of an elliptic curve over a fixed prime field varies. J. Lond. Math. Soc. 43, 57–60 (1968)
Carayol, H.: La conjecture de Sato–Tate. Séminaire Bourbaki 977, 59ème année (2006–2007)
Castryck, W., Folsom, A., Hubrechts, H., Sutherland, A.V.: The probability that the number of points on the Jacobian of a genus 2 curve is prime. Proc. Lond. Math. Soc. 104(6), 1235–1270 (2012)
Chavdarov, N.: The generic irreducibility of the numerator of the zeta function in a family of curves with large monodromy. Duke Math. J. 87(1), 151–180 (1997)
Crandall, R., Pomerance, C.: Prime Numbers: A Computational Perspective, 2nd edn. Springer, Berlin (2005)
Deligne, P.: La conjecture de Weil: II. Publ. Math. IHES 52, 137–252 (1980)
Deligne, P., Rapoport, M.: Les schémas de modules de courbes elliptiques. In: Modular Functions of One Variable, II (Proc. Int. Summer School Antwerp). Lecture Notes in Math., vol. 349, pp. 143–174. Springer, Berlin (1973)
Fried, M., Jarden, M.: Field Arithmetic, 3rd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 11. Springer, Berlin (1986)
Galbraith, S., McKee, J.: The probability that the number of points on an elliptic curve over a finite field is prime. J. Lond. Math. Soc. 62(3), 671–684 (2000)
Gekeler, E.-U.: Frobenius distributions of elliptic curves over finite prime fields. Int. Math. Res. Not. 37, 1999–2018 (2003)
Gekeler, E.-U.: The distribution of group structures on elliptic curves over finite prime fields. Doc. Math. 11, 119–142 (2006)
Gekeler, E.-U.: Statistics about elliptic curves over finite prime fields. Manuscr. Math. 127, 55–67 (2008)
Howe, E.: On the group orders of elliptic curves over finite fields. Compos. Math. 85, 229–247 (1993)
Katz, N., Mazur, B.: Arithmetic Moduli of Elliptic Curves. Princeton University Press, Princeton (1985)
Katz, N., Sarnak, P.: Random Matrices, Frobenius Eigenvalues, and Monodromy. Colloquium Publications, vol. 45. Am. Math. Soc., Providence (1998)
Kedlaya, K., Sutherland, A.V.: Hyperelliptic curves, L-polynomials, and random matrices. In: Lachaud, G., Ritzenthaler, C., Tsfasman, M. (eds.) Proceedings of AGCT-11. Contemporary Mathematics, vol. 487, pp. 119–162. American Mathematical Society, Providence (2009)
Lang, S., Trotter, H.: Frobenius Distributions in GL2-Extensions. Springer, Berlin (1976)
Lenstra, H.W.: Factoring integers with elliptic curves. Ann. Math. 126(2), 649–673 (1987)
Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Ill. J. Math. 6(1), 64–94 (1962)
Silverman, J.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, vol. 106. Springer, Berlin (1985)
Vlǎduţ, S.: Cyclicity statistics for elliptic curves over finite fields. Finite Fields Appl. 5, 13–25 (1999)
Yoshida, H.: On an analogue of the Sato conjecture. Invent. Math. 19, 261–277 (1973)
Acknowledgements
The authors are very grateful to the anonymous referee of a prior submission of this document, to the anonymous referee of the current submission, to Hendrik W. Lenstra for suggesting the use of Chebotarev’s density theorem, and to Barry Mazur and Bjorn Poonen for their helpful comments on modular curves. Both authors thank F.W.O.-Vlaanderen for its financial support. The first author thanks the Massachusetts Institute of Technology for its hospitality.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Castryck, W., Hubrechts, H. The distribution of the number of points modulo an integer on elliptic curves over finite fields. Ramanujan J 30, 223–242 (2013). https://doi.org/10.1007/s11139-012-9444-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11139-012-9444-0