iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s11139-012-9444-0
The distribution of the number of points modulo an integer on elliptic curves over finite fields | The Ramanujan Journal Skip to main content
Log in

The distribution of the number of points modulo an integer on elliptic curves over finite fields

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Let \(\mathbb{F}_{q}\) be a finite field, and let b and N be integers. We prove explicit estimates for the probability that the number of rational points on a randomly chosen elliptic curve E over \(\mathbb{F}_{q}\) equals b modulo N. The underlying tool is an equidistribution result on the action of Frobenius on the N-torsion subgroup of E. Our results subsume and extend previous work by Achter and Gekeler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achter, J.: The distribution of class groups of function fields. J. Pure Appl. Algebra 204(2), 316–333 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Achter, J.: Results of Cohen–Lenstra type for quadratic function fields. In: Lauter, K., Ribet, K. (eds.) Computational Arithmetic Geometry. Contemporary Mathematics, vol. 463, pp. 1–8. American Mathematical Society, Providence (2008)

    Chapter  Google Scholar 

  3. Achter, J., Sadornil, D.: On the probability of having rational -isogenies. Arch. Math. 90, 511–519 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Birch, B.: How the number of points of an elliptic curve over a fixed prime field varies. J. Lond. Math. Soc. 43, 57–60 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carayol, H.: La conjecture de Sato–Tate. Séminaire Bourbaki 977, 59ème année (2006–2007)

  6. Castryck, W., Folsom, A., Hubrechts, H., Sutherland, A.V.: The probability that the number of points on the Jacobian of a genus 2 curve is prime. Proc. Lond. Math. Soc. 104(6), 1235–1270 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chavdarov, N.: The generic irreducibility of the numerator of the zeta function in a family of curves with large monodromy. Duke Math. J. 87(1), 151–180 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Crandall, R., Pomerance, C.: Prime Numbers: A Computational Perspective, 2nd edn. Springer, Berlin (2005)

    MATH  Google Scholar 

  9. Deligne, P.: La conjecture de Weil: II. Publ. Math. IHES 52, 137–252 (1980)

    MathSciNet  MATH  Google Scholar 

  10. Deligne, P., Rapoport, M.: Les schémas de modules de courbes elliptiques. In: Modular Functions of One Variable, II (Proc. Int. Summer School Antwerp). Lecture Notes in Math., vol. 349, pp. 143–174. Springer, Berlin (1973)

    Chapter  Google Scholar 

  11. Fried, M., Jarden, M.: Field Arithmetic, 3rd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 11. Springer, Berlin (1986)

    MATH  Google Scholar 

  12. Galbraith, S., McKee, J.: The probability that the number of points on an elliptic curve over a finite field is prime. J. Lond. Math. Soc. 62(3), 671–684 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gekeler, E.-U.: Frobenius distributions of elliptic curves over finite prime fields. Int. Math. Res. Not. 37, 1999–2018 (2003)

    Article  MathSciNet  Google Scholar 

  14. Gekeler, E.-U.: The distribution of group structures on elliptic curves over finite prime fields. Doc. Math. 11, 119–142 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Gekeler, E.-U.: Statistics about elliptic curves over finite prime fields. Manuscr. Math. 127, 55–67 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Howe, E.: On the group orders of elliptic curves over finite fields. Compos. Math. 85, 229–247 (1993)

    MathSciNet  MATH  Google Scholar 

  17. Katz, N., Mazur, B.: Arithmetic Moduli of Elliptic Curves. Princeton University Press, Princeton (1985)

    MATH  Google Scholar 

  18. Katz, N., Sarnak, P.: Random Matrices, Frobenius Eigenvalues, and Monodromy. Colloquium Publications, vol. 45. Am. Math. Soc., Providence (1998)

    Google Scholar 

  19. Kedlaya, K., Sutherland, A.V.: Hyperelliptic curves, L-polynomials, and random matrices. In: Lachaud, G., Ritzenthaler, C., Tsfasman, M. (eds.) Proceedings of AGCT-11. Contemporary Mathematics, vol. 487, pp. 119–162. American Mathematical Society, Providence (2009)

    Google Scholar 

  20. Lang, S., Trotter, H.: Frobenius Distributions in GL2-Extensions. Springer, Berlin (1976)

    Google Scholar 

  21. Lenstra, H.W.: Factoring integers with elliptic curves. Ann. Math. 126(2), 649–673 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Ill. J. Math. 6(1), 64–94 (1962)

    MathSciNet  MATH  Google Scholar 

  23. Silverman, J.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, vol. 106. Springer, Berlin (1985)

    Google Scholar 

  24. Vlǎduţ, S.: Cyclicity statistics for elliptic curves over finite fields. Finite Fields Appl. 5, 13–25 (1999)

    Article  MathSciNet  Google Scholar 

  25. Yoshida, H.: On an analogue of the Sato conjecture. Invent. Math. 19, 261–277 (1973)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the anonymous referee of a prior submission of this document, to the anonymous referee of the current submission, to Hendrik W. Lenstra for suggesting the use of Chebotarev’s density theorem, and to Barry Mazur and Bjorn Poonen for their helpful comments on modular curves. Both authors thank F.W.O.-Vlaanderen for its financial support. The first author thanks the Massachusetts Institute of Technology for its hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wouter Castryck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castryck, W., Hubrechts, H. The distribution of the number of points modulo an integer on elliptic curves over finite fields. Ramanujan J 30, 223–242 (2013). https://doi.org/10.1007/s11139-012-9444-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-012-9444-0

Keywords

Mathematics Subject Classification

Navigation