Abstract
Linear codes with small hulls over finite fields have been extensively studied due to their practical applications in computational complexity and information protection. In this paper, we develop a general method to determine the exact value of \(D_4^H(n,k,1)\) for \(n\le 12\) or \(k\in \{1,2,3,n-1,n-2,n-3\}\), where \(D_4^H(n,k,1)\) denotes the largest minimum distance among all quaternary linear [n, k] codes with one-dimensional Hermitian hull. As a consequence, we solve a conjecture proposed by Mankean and Jitman on the largest minimum distance of a quaternary linear code with one-dimensional Hermitian hull. As an application, we construct some binary entanglement-assisted quantum error-correcting codes (EAQECCs) from quaternary linear codes with one-dimensional Hermitian hull. Some of these EAQECCs are optimal codes, and some of them are better than previously known ones.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Araya, M., Harada, M.: On the minimum weights of binary linear complementary dual codes. Cryptogr. Commun. 12(2), 285–300 (2020)
Araya, M., Harada, M., Saito, K.: Characterization and classification of optimal LCD codes. Des. Codes Cryptogr. 89(4), 617–640 (2021)
Araya, M., Harada, M., Saito, K.: On the minimum weights of binary LCD codes and ternary LCD codes. Finite Fields Appl. 76, 101925 (2021)
Araya, M., Harada, M., Saito, K.: Quaternary Hermitian linear complementary dual codes. IEEE Trans. Inf. Theory 66(5), 2751–2759 (2020)
Assmus, E.F., Jr., Key, J.D.: Affine and projective planes. Discrete Math. 83(2–3), 161–187 (1990)
Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user language. J. Symbolic Comput. 24, 235–265 (1997)
Bouyukliev, I., Grassl, M., Varbanov, Z.: New bounds for \(n_4(k, d)\) and classification of some optimal codes over GF(4). Discrete Math. 281(1–3), 43–66 (2004)
Bouyuklieva, S.: Optimal binary LCD codes. Des. Codes Cryptogr. 89(11), 2445–2461 (2021)
Brun, T., Devetak, I., Hsieh, M.H.: Correcting quantum errors with entanglement. Science 314(5789), 436–439 (2006)
Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)
Calderbank, A.. R., Shor, P.. W.: Good quantum error-correcting codes exist. Phys. Rev. A, Gen. Phys 54(2), 1098–1105 (1996)
Carlet, C., Li, C., Mesnager, S.: Linear codes with small hulls in semi-primitive case. Des. Codes Cryptogr. 87(12), 3063–3075 (2019)
Carlet, C., Mesnager, S., Tang, C., Qi, Y.: New characterization and parametrization of LCD codes. IEEE Trans. Inf. Theory 65(1), 39–49 (2019)
Carlet, C., Mesnager, S., Tang, C., Qi, Y., Pellikaan, R.: Linear codes over \({\mathbb{F} }_q\) are equivalent to LCD codes for \(q > 3\). IEEE Trans. Inf. Theory 64(4), 3010–3017 (2018)
Dougherty, S.T., Kim, J.-L., \(\ddot{{ O}}\)zkaya, B., Sok, L., Solé, P.: The combinatorics of LCD codes: linear programming bound and orthogonal matrices. Int. J. Inf. Coding Theory 4(2–3), 116–128 (2017)
Galindo, C., Hernando, F., Matsumoto, R., Ruano, D.: Entanglementassisted quantum error-correcting codes over arbitrary finite fields. Quantum Inf. Process. 18(4), 1–18 (2019)
Galvez, L., Kim, J.-L., Lee, N., Roe, Y.G., Won, B.S.: Some bounds on binary LCD codes. Cryptogr. Commun. 10(4), 719–728 (2018)
Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes. http://www.codetables.de. Accessed on 21 Oct 2022
Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86(1), 121–136 (2018)
Harada, M., Saito, K.: Binary linear complementary dual codes. Cryptogr. Commun. 11(4), 677–696 (2019)
Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press (2003)
Ishizuka, K.: Construction of quaternary Hermitian LCD codes. Cryptogr. Commun. 15(2), 455–467 (2023)
Jin, L., Xing, C.: Euclidean and Hermitian self-orthogonal algebraic geometry codes and their application to quantum codes. IEEE Trans. Inf. Theory 58(8), 5484–5489 (2012)
Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2086 (2014)
Kim, J.-L.: Binary optimal linear codes with various hull dimensions and entanglement-assisted QECC. Comput. Appl. Math. 42, 114 (2023)
Leon, J.: An algorithm for computing the automorphism group of a Hadamard matrix. J. Comb. Theory A 27(3), 289–306 (1979)
Leon, J.: Permutation group algorithms based on partition I: theory and algorithms. J. Symb. Comput. 12(4–5), 533–583 (1982)
Li, C., Zeng, P.: Constructions of linear codes with one-dimensional hull. IEEE Trans. Inf. Theory 65(3), 1668–1676 (2019)
Li, S., Shi, M., Kim, J.-L.: Characterization of optimal binary linear codes with one-dimensional hull, arXiv:2211.02480 (2022)
Li, S., Shi, M., Wang, J.: An improved method for constructing formally self-dual codes with small hulls. Des. Codes Cryptogr. 91(7), 2563–2583 (2023)
Li, Y., Wan, R., Zhu, S.: MDS codes with Euclidean and Hermitian hulls of exible dimensions and their applications to EAQECCs. Quantum Inf. Process. 22(3), 153 (2023)
Liu, Y., Li, R., Fu, Q., Song, H.: Minimum distances of binary optimal LCD codes of dimension five are completely determined, arXiv:2210.05238 (2022)
Lu, L., Li, R., Guo, L., Fu, Q.: Maximal entanglement entanglementassisted quantum codes constructed from linear codes. Quantum Inf. Process. 14(1), 165–182 (2015)
Luo, G., Ezerman, M.F., Grassl, M., Ling, S.: How much entanglement does a quantum code need? arXiv:2207.05647 (2022)
Luo, G., Ezerman, M.F., Ling, S.: Entanglement-assisted and subsystem quantum codes: new propagation rules and constructions, arXiv:2206.09782 (2022)
MacWilliams, F.J., Odlyzko, A.M., Sloane, N.J.A., Ward, H.N.: Self-dual codes over GF(4). J. Comb. Theory A 25(3), 288–318 (1978)
Mankean, T., Jitman, S.: Constructions and bounds on quaternary linear codes with Hermitian hull dimension one. Arab. J. Math. 10(1), 175–184 (2021)
Mankean, T., Jitman, S.: Optimal binary and ternary linear codes with hull dimension one. J. Appl. Math. Comput. 64(1–2), 137–155 (2020)
Pang, B., Zhu, S., Kai, X.: Some new bounds on LCD codes over finite fields. Cryptogr. Commun. 12(4), 743–755 (2020)
Shi, M., \({ \ddot{O}}\)zbudak, F. , Xu, L., Solé, P.: LCD codes from tridiagonal Toeplitz matrices. Finite Fields Appl. 75(8), 101892 (2021)
Sendrier, N.: Finding the permutation between equivalent codes: the support splitting algorithm. IEEE Trans. Inf. Theory 46(4), 1193–1203 (2000)
Sendrier, N., Skersys, G.: On the computation of the automorphism group of a linear code. In: Proceedings of IEEE International Symposium on Information Theory, Washington, DC, p. 13 (2001)
Sok, L., Qian, G.: Linear codes with arbitrary dimensional hull and their applications to EAQECCs. Quantum Inf. Process. 21(2), 72 (2022)
Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77(5), 793–797 (1996)
Wang, L., Zhu, S.: New quantum MDS codes derived from constacyclic codes. Quantum Inf. Process. 14(3), 881–889 (2015)
Wilde, M.. M., Brun, T.. A.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A Gen. Phys 77(6), 064302 (2008)
Zhu, S., Guo, H., Kai, X., Sun, Z.: New quantum codes derived from images of cyclic codes. Quantum Inf. Process. 21(7), 254 (2022)
Acknowledgements
This research is supported by Natural Science Foundation of China (12071001 and 12201170) and the Natural Science Foundation of Anhui Province (2108085QA03). The authors would also like to thank the editor and the anonymous referees for helpful comments which have highly improved the quality of the paper.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no conflicts of interest to declare that are relevant to the content of this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This research is supported by Natural Science Foundation of China (12071001 and 12201170) and the Natural Science Foundation of Anhui Province (2108085QA03).
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Li, S., Shi, M. & Liu, H. Optimal quaternary linear codes with one-dimensional Hermitian hull and related EAQECCs. Quantum Inf Process 22, 388 (2023). https://doi.org/10.1007/s11128-023-04133-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-023-04133-8