iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s11128-023-04133-8
Optimal quaternary linear codes with one-dimensional Hermitian hull and related EAQECCs | Quantum Information Processing Skip to main content
Log in

Optimal quaternary linear codes with one-dimensional Hermitian hull and related EAQECCs

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Linear codes with small hulls over finite fields have been extensively studied due to their practical applications in computational complexity and information protection. In this paper, we develop a general method to determine the exact value of \(D_4^H(n,k,1)\) for \(n\le 12\) or \(k\in \{1,2,3,n-1,n-2,n-3\}\), where \(D_4^H(n,k,1)\) denotes the largest minimum distance among all quaternary linear [nk] codes with one-dimensional Hermitian hull. As a consequence, we solve a conjecture proposed by Mankean and Jitman on the largest minimum distance of a quaternary linear code with one-dimensional Hermitian hull. As an application, we construct some binary entanglement-assisted quantum error-correcting codes (EAQECCs) from quaternary linear codes with one-dimensional Hermitian hull. Some of these EAQECCs are optimal codes, and some of them are better than previously known ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Araya, M., Harada, M.: On the minimum weights of binary linear complementary dual codes. Cryptogr. Commun. 12(2), 285–300 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Araya, M., Harada, M., Saito, K.: Characterization and classification of optimal LCD codes. Des. Codes Cryptogr. 89(4), 617–640 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Araya, M., Harada, M., Saito, K.: On the minimum weights of binary LCD codes and ternary LCD codes. Finite Fields Appl. 76, 101925 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Araya, M., Harada, M., Saito, K.: Quaternary Hermitian linear complementary dual codes. IEEE Trans. Inf. Theory 66(5), 2751–2759 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Assmus, E.F., Jr., Key, J.D.: Affine and projective planes. Discrete Math. 83(2–3), 161–187 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user language. J. Symbolic Comput. 24, 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bouyukliev, I., Grassl, M., Varbanov, Z.: New bounds for \(n_4(k, d)\) and classification of some optimal codes over GF(4). Discrete Math. 281(1–3), 43–66 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bouyuklieva, S.: Optimal binary LCD codes. Des. Codes Cryptogr. 89(11), 2445–2461 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brun, T., Devetak, I., Hsieh, M.H.: Correcting quantum errors with entanglement. Science 314(5789), 436–439 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Calderbank, A.. R., Shor, P.. W.: Good quantum error-correcting codes exist. Phys. Rev. A, Gen. Phys 54(2), 1098–1105 (1996)

    Article  ADS  Google Scholar 

  12. Carlet, C., Li, C., Mesnager, S.: Linear codes with small hulls in semi-primitive case. Des. Codes Cryptogr. 87(12), 3063–3075 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carlet, C., Mesnager, S., Tang, C., Qi, Y.: New characterization and parametrization of LCD codes. IEEE Trans. Inf. Theory 65(1), 39–49 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Carlet, C., Mesnager, S., Tang, C., Qi, Y., Pellikaan, R.: Linear codes over \({\mathbb{F} }_q\) are equivalent to LCD codes for \(q > 3\). IEEE Trans. Inf. Theory 64(4), 3010–3017 (2018)

    Article  MATH  Google Scholar 

  15. Dougherty, S.T., Kim, J.-L., \(\ddot{{ O}}\)zkaya, B., Sok, L., Solé, P.: The combinatorics of LCD codes: linear programming bound and orthogonal matrices. Int. J. Inf. Coding Theory 4(2–3), 116–128 (2017)

  16. Galindo, C., Hernando, F., Matsumoto, R., Ruano, D.: Entanglementassisted quantum error-correcting codes over arbitrary finite fields. Quantum Inf. Process. 18(4), 1–18 (2019)

    Article  MATH  Google Scholar 

  17. Galvez, L., Kim, J.-L., Lee, N., Roe, Y.G., Won, B.S.: Some bounds on binary LCD codes. Cryptogr. Commun. 10(4), 719–728 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes. http://www.codetables.de. Accessed on 21 Oct 2022

  19. Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86(1), 121–136 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Harada, M., Saito, K.: Binary linear complementary dual codes. Cryptogr. Commun. 11(4), 677–696 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press (2003)

  22. Ishizuka, K.: Construction of quaternary Hermitian LCD codes. Cryptogr. Commun. 15(2), 455–467 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jin, L., Xing, C.: Euclidean and Hermitian self-orthogonal algebraic geometry codes and their application to quantum codes. IEEE Trans. Inf. Theory 58(8), 5484–5489 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2086 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kim, J.-L.: Binary optimal linear codes with various hull dimensions and entanglement-assisted QECC. Comput. Appl. Math. 42, 114 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  26. Leon, J.: An algorithm for computing the automorphism group of a Hadamard matrix. J. Comb. Theory A 27(3), 289–306 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  27. Leon, J.: Permutation group algorithms based on partition I: theory and algorithms. J. Symb. Comput. 12(4–5), 533–583 (1982)

    MathSciNet  MATH  Google Scholar 

  28. Li, C., Zeng, P.: Constructions of linear codes with one-dimensional hull. IEEE Trans. Inf. Theory 65(3), 1668–1676 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, S., Shi, M., Kim, J.-L.: Characterization of optimal binary linear codes with one-dimensional hull, arXiv:2211.02480 (2022)

  30. Li, S., Shi, M., Wang, J.: An improved method for constructing formally self-dual codes with small hulls. Des. Codes Cryptogr. 91(7), 2563–2583 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, Y., Wan, R., Zhu, S.: MDS codes with Euclidean and Hermitian hulls of exible dimensions and their applications to EAQECCs. Quantum Inf. Process. 22(3), 153 (2023)

    Article  ADS  MATH  Google Scholar 

  32. Liu, Y., Li, R., Fu, Q., Song, H.: Minimum distances of binary optimal LCD codes of dimension five are completely determined, arXiv:2210.05238 (2022)

  33. Lu, L., Li, R., Guo, L., Fu, Q.: Maximal entanglement entanglementassisted quantum codes constructed from linear codes. Quantum Inf. Process. 14(1), 165–182 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Luo, G., Ezerman, M.F., Grassl, M., Ling, S.: How much entanglement does a quantum code need? arXiv:2207.05647 (2022)

  35. Luo, G., Ezerman, M.F., Ling, S.: Entanglement-assisted and subsystem quantum codes: new propagation rules and constructions, arXiv:2206.09782 (2022)

  36. MacWilliams, F.J., Odlyzko, A.M., Sloane, N.J.A., Ward, H.N.: Self-dual codes over GF(4). J. Comb. Theory A 25(3), 288–318 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mankean, T., Jitman, S.: Constructions and bounds on quaternary linear codes with Hermitian hull dimension one. Arab. J. Math. 10(1), 175–184 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mankean, T., Jitman, S.: Optimal binary and ternary linear codes with hull dimension one. J. Appl. Math. Comput. 64(1–2), 137–155 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pang, B., Zhu, S., Kai, X.: Some new bounds on LCD codes over finite fields. Cryptogr. Commun. 12(4), 743–755 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shi, M., \({ \ddot{O}}\)zbudak, F. , Xu, L., Solé, P.: LCD codes from tridiagonal Toeplitz matrices. Finite Fields Appl. 75(8), 101892 (2021)

  41. Sendrier, N.: Finding the permutation between equivalent codes: the support splitting algorithm. IEEE Trans. Inf. Theory 46(4), 1193–1203 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sendrier, N., Skersys, G.: On the computation of the automorphism group of a linear code. In: Proceedings of IEEE International Symposium on Information Theory, Washington, DC, p. 13 (2001)

  43. Sok, L., Qian, G.: Linear codes with arbitrary dimensional hull and their applications to EAQECCs. Quantum Inf. Process. 21(2), 72 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77(5), 793–797 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Wang, L., Zhu, S.: New quantum MDS codes derived from constacyclic codes. Quantum Inf. Process. 14(3), 881–889 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Wilde, M.. M., Brun, T.. A.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A Gen. Phys 77(6), 064302 (2008)

    Article  ADS  Google Scholar 

  47. Zhu, S., Guo, H., Kai, X., Sun, Z.: New quantum codes derived from images of cyclic codes. Quantum Inf. Process. 21(7), 254 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by Natural Science Foundation of China (12071001 and 12201170) and the Natural Science Foundation of Anhui Province (2108085QA03). The authors would also like to thank the editor and the anonymous referees for helpful comments which have highly improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minjia Shi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is supported by Natural Science Foundation of China (12071001 and 12201170) and the Natural Science Foundation of Anhui Province (2108085QA03).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Shi, M. & Liu, H. Optimal quaternary linear codes with one-dimensional Hermitian hull and related EAQECCs. Quantum Inf Process 22, 388 (2023). https://doi.org/10.1007/s11128-023-04133-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04133-8

Keywords

Mathematics Subject Classification

Navigation