iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s11128-012-0416-5
Influence of detector motion on discrimination between photon polarizations | Quantum Information Processing Skip to main content
Log in

Influence of detector motion on discrimination between photon polarizations

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the discrimination between photon polarizations when measured by moving detectors. Both unambiguous and minimum-error discriminations are considered, and we analyze the the optimal successful (correct) probability as a function of the apparatus’ velocity. The Holevo bound for polarization discrimination is also discussed and explicit calculation shows that the Holevo bound and the optimal successful (correct) probability for unambiguous (minimum-error) discrimination simultaneously increase or decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Helstrom C.W.: Quantum Detection and Estimation Theory. Academic, New York (1976)

    Google Scholar 

  2. Holevo A.S.: Statistical decision theory for quantum systems. J. Multivar. Anal. 3, 337 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Yuen H.P., Kennedy R.S., Lax M.: Optimum testing of multiple hypotheses in quantum detection theory. IEEE Trans. Inf. Theory IT 21, 125 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barnett S.M.: Minimum-error discrimination between multiply symmetric states. Phys. Rev. A 64, 030303(R) (2001)

    ADS  Google Scholar 

  5. Andersson E., Barnett S.M., Gilson C.R., Hunter K.: Minimum-error discrimination between three mirror-symmetric states. Phys. Rev. 65, 052308 (2002)

    Article  ADS  Google Scholar 

  6. Chou C.L., Hsu L.Y.: Minimum-error discrimination between symmetric mixed quantum states. Phys. Rev. A 68, 042305 (2003)

    Article  ADS  Google Scholar 

  7. Herzog U., Bergou J.A.: Minimum-error discrimination between subsets of linearly dependent quantum states. Phys. Rev. A 65, 050305(R) (2002)

    Article  ADS  Google Scholar 

  8. Dieks D.: Overlap and distinguishability of quantum states. Phys. Lett. A 126, 303 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  9. Ivanovic I.D.: How to differentiate between non-orthogonal states. Phys. Lett. A 123, 257 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  10. Peres A.: How to differentiate between non-orthogonal states. Phys. Lett. A 128, 19 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  11. Jaeger G., Shimony A.: Optimal distinction between two non-orthogonal quantum states. Phys. Lett. A 197, 83 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Chefles A.: Unambiguous discrimination between linearly independent quantum states. Phys. Lett. A 239, 339 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Peres A., Terno D.R.: Optimal distinction between non-orthogonal quantum states. J. Phys. A 31, 7105 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Duan L.M., Guo G.C.: Probabilistic cloning and identification of linearly independent quantum states. Phys. Rev. Lett. 80, 4999 (1998)

    Article  ADS  Google Scholar 

  15. Sun Y., Hillery M., Bergou J.A.: Optimum unambiguous discrimination between linearly independent nonorthogonal quantum states and its optical realization. Phys. Rev. A 64, 022311 (2001)

    Article  ADS  Google Scholar 

  16. Chefles A., Barnett S.M.: Optimum unambiguous discrimination between linearly independent symmetric states. Phys. Lett. A 250, 223 (1998)

    Article  ADS  Google Scholar 

  17. Jiménez O., Sánchez-Lozano X., Burgos-Inostroza E., Delgado A., Saavedra C.: Experimental scheme for unambiguous discrimination of linearly independent symmetric states. Phys. Rev. A 76, 062107 (2007)

    Article  ADS  Google Scholar 

  18. Jafarizadeh M.A., Rezaei M., Karim N., Amiri A.R.: Optimal unambiguous discrimination of quantum states. Phys. Rev. A 77, 042314 (2008)

    Article  ADS  Google Scholar 

  19. Wu X., Yu S., Zhou T.: One-photon interferometer for realizing optimal unambiguous discrimination among quantum subsets. Phys. Rev. A 79, 052302 (2009)

    Article  ADS  Google Scholar 

  20. Zhou, T.: Unambiguous discrimination between two unknown qudit states. Quantum Int. Process. doi:10.1007/s11128-011-0327-x

  21. Aspelmeyer M. et al.: Long-distance free-space distribution of quantum entanglement. Science 301, 621 (2003)

    Article  ADS  Google Scholar 

  22. Resch K.J. et al.: Distributing entanglement and single photons through an intra-city, free-space quantum channel. Opt. Express 13, 202 (2005)

    Article  ADS  Google Scholar 

  23. Ursin R. et al.: Entanglement-based quantum communication over 144 km. Nat. Phys. 3, 481 (2007)

    Article  Google Scholar 

  24. Fedrizzi A., Ursin R., Herbst T., Nespoli M., Prevedel R., Scheidl T., Tiefenbacher F., Jannewein T., Zeilinger A.: High-fidelity transmission of entanglement over a high-loss free-space channel. Nat. Phys. 5, 389 (2009)

    Article  Google Scholar 

  25. Peres A., Terno D.R.: Relativistic Doppler effect in quantum communication. J. Mod. Opt. 50, 1165 (2003)

    MathSciNet  ADS  MATH  Google Scholar 

  26. Gingrich R.M., Bergou A.J., Adami C.: Entangled light in moving frames. Phys. Rev. A 68, 042102 (2003)

    Article  ADS  Google Scholar 

  27. Wigner E.: On unitary representations of the inhomogeneous lorentz group. Ann. Math. 40, 149 (1939)

    Article  MathSciNet  Google Scholar 

  28. Weinberg S.: The quantum theory of Fields, Vol. 1. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  29. Mandel L., Wolf E.: Optical coherence and quantum optics. Cambrige University Press, Cambrige (1995)

    Google Scholar 

  30. Nielson M.A., Chuang I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  31. Peres A., Scudo P.F., Terno D.R.: Quantum entropy and special relativity. Phys. Rev. Lett. 88, 230402 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  32. Peres A., Terno D.R.: Quantum information and relativity theory. Rev. Mod. Phys. 76, 93 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, T., Cui, J. & Cao, Y. Influence of detector motion on discrimination between photon polarizations. Quantum Inf Process 12, 747–759 (2013). https://doi.org/10.1007/s11128-012-0416-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0416-5

Keywords

Navigation