iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s11095-007-9357-6
Lysosomal Enzyme Replacement of the Brain with Intravenous Non-Viral Gene Transfer | Pharmaceutical Research Skip to main content

Advertisement

Log in

Lysosomal Enzyme Replacement of the Brain with Intravenous Non-Viral Gene Transfer

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The delivery of non-viral plasmid DNA to brain across the blood-brain barrier (BBB) with intravenous administration of non-viral plasmid DNA encoding a lysosomal enzyme, β-glucuronidase (GUSB), was examined in GUSB null mice, a model of type VII mucopolysaccharidosis.

Methods

The plasmid, designated pCMV-GUSB, is encapsulated in Trojan horse liposomes, which are targeted across the BBB, and the brain cell membrane, with a monoclonal antibody to the mouse transferrin receptor.

Results

The GUSB enzyme activity was increased >50-fold in cell culture of fibroblasts obtained from GUSB null mice, following application of the antibody-targeted liposomes carrying the pCMV–GUSB, and enzyme activity remained high for >2 weeks. Adult GUSB null mice were treated with a single intravenous administration of 0.2 ml of Trojan horse liposomes carrying the pCMV–GUSB at a dose of 10 μg/mouse of plasmid DNA. The GUSB enzyme activity was increased greater than tenfold in brain, liver, spleen, lung, and kidney, but not in heart.

Conclusions

Intravenous Trojan horse liposome administration increased brain GUSB enzyme activity to the therapeutic range of brain GUSB enzyme activity. These studies show it is possible to deliver non-viral plasmid DNA encoding lysosomal enzymes to the brain following intravenous administration of receptor-specific Trojan horse liposomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y. A. Ioannou. Gene therapy for lysosomal storage disorders with neuropathology. J. Am. Soc. Nephrol. 11:1542–1547 (2000).

    PubMed  CAS  Google Scholar 

  2. C. Martini, G. Ciana, A. Benettoni, F. Katouzian, G. M. Severini, R. Bussani, et al. Intractable fever and cortical neuronal glycogen storage in glycogenosis type 2. Neurology 57:906–908 (2001).

    PubMed  CAS  Google Scholar 

  3. S. S. Elliger, C. A. Elliger, C. P. Aguilar, N. R. Raju, and G. L. Watson. Elimination of lysosomal storage in brains of MPS VII mice treated by intrathecal administration of an adeno-associated virus vector. Gene Ther. 6:1175–1178 (1999).

    Article  PubMed  CAS  Google Scholar 

  4. L. Xu, R. L. Mango, M. S. Sands, M. E. Haskins, N. M. Ellinwood, and K. P. Ponder. Evaluation of pathological manifestations of disease in mucopolysaccharidosis VII mice after neonatal hepatic gene therapy. Mol. Ther. 6:745–758 (2002).

    Article  PubMed  CAS  Google Scholar 

  5. M. A. Passini and J. H. Wolfe. Widespread gene delivery and structure-specific patterns of expression in the brain after intraventricular injections of neonatal mice with an adeno-associated virus vector. J. Virol. 75:12382–12392 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. B. A. Karolewski and J. H. Wolfe. Genetic correction of the fetal brain increases the lifespan of mice with the severe multisystemic disease mucopolysaccharidosis type VII. Mol. Ther. 14:14–24 (2006).

    Article  PubMed  CAS  Google Scholar 

  7. A. F. Skorupa, K. J. Fisher, J. M. Wilson, M. K. Parente, and J. H. Wolfe. Sustained production of beta-glucuronidase from localized sites after AAV vector gene transfer results in widespread distribution of enzyme and reversal of lysosomal storage lesions in a large volume of brain in mucopolysaccharidosis VII mice. Exp. Neurol. 160:17–27 (1999).

    Article  PubMed  CAS  Google Scholar 

  8. C. H. Vite, M. A. Passini, M. E. Haskins, and J. H. Wolfe. Adeno-associated virus vector-mediated transduction in the cat brain. Gene Ther. 10:1874–1881 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. W. M. Pardridge. Drug and gene delivery to the brain: the vascular route. Neuron 36:555–558 (2002).

    Article  PubMed  CAS  Google Scholar 

  10. N. Shi, Y. Zhang, C. Zhu, R. J. Boado, and W. M. Pardridge. Brain-specific expression of an exogenous gene after i.v. administration. Proc. Natl. Acad. Sci. U.S.A. 98:12754–12759 (2001).

    Article  PubMed  CAS  Google Scholar 

  11. N. Shi, R. J. Boado, and W. M. Pardridge. Receptor-mediated gene targeting to tissues in vivo following intravenous administration of pegylated immunoliposomes. Pharm. Res. 18:1091–1095 (2001).

    Article  PubMed  CAS  Google Scholar 

  12. Y. Zhang, F. Schlachetzki, and W.M. Pardridge. Global non-viral gene transfer to the primate brain following intravenous administration. Mol. Ther. 7:11–18 (2003).

    Article  PubMed  CAS  Google Scholar 

  13. D. C. Mash, J. Pablo, D. D. Flynn, S. M. Efange, and W. J. Weiner. Characterization and distribution of transferrin receptors in the rat brain. J. Neurochem. 55:1972–1979 (1990).

    Article  PubMed  CAS  Google Scholar 

  14. W. Zhao, H. Chen, H. Xu, E. Moore, N. Meiri, M. J. Quon, et al. Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J. Biol. Chem. 274:34893–34902 (1999).

    Article  PubMed  CAS  Google Scholar 

  15. E. H. Birkenmeier, M. T. Davisson, W. G. Beamer, R. E. Ganschow, C. A. Vogler, B. Gwynn, et al. Murine mucopolysaccharidosis type VII. Characterization of a mouse with beta-glucuronidase deficiency. J. Clin. Invest. 83:1258–1266 (1989).

    Article  PubMed  CAS  Google Scholar 

  16. J. W. Kyle, E. H. Birkenmeier, B. Gwynn, C. Vogler, P. C. Hoppe, J. W. Hoffmann, et al. Correction of murine mucopolysaccharidosis VII by a human beta-glucuronidase transgene. Proc. Natl. Acad. Sci. U.S.A. 87:3914–3918 (1990).

    Article  PubMed  CAS  Google Scholar 

  17. R. J. Boado, J. Y. Li, M. Nagaya, C. Zhang, and W. M. Pardridge. Selective expression of the large neutral amino acid transporter at the blood-brain barrier. Proc. Natl. Acad. Sci. U.S.A. 96:12079–12084 (1999).

    Article  PubMed  CAS  Google Scholar 

  18. R. J. Boado, J. Y. Li, C. Chu, F. Ogoshi, P. Wise, and W. M. Pardridge. Site-directed mutagenesis of cysteine residues of large neutral amino acid transporter LAT1. Biochim. Biophys. Acta 1715:104–110 (2005).

    Article  PubMed  CAS  Google Scholar 

  19. W. M. Pardridge. Gene targeting in vivo with pegylated immunoliposomes. Methods Enzymol. 373:507–528 (2003).

    PubMed  CAS  Google Scholar 

  20. Y. Zhang, R. J. Boado, and W. M. Pardridge. Marked enhancement in gene expression by targeting the human insulin receptor. J. Genet. Med. 5:157–163 (2003).

    CAS  Google Scholar 

  21. M. R. Islam, J. H. Grubb, and W. S. Sly. C-terminal processing of human beta-glucuronidase. The propeptide is required for full expression of catalytic activity, intracellular retention, and proper phosphorylation. J. Biol. Chem. 268:22627–22633 (1993).

    PubMed  CAS  Google Scholar 

  22. J. H. Wolfe, J. W. Kyle, M. S. Sands, W. S. Sly, D. G. Markowitz, and M. K. Parente. High level expression and export of beta-glucuronidase from murine mucopolysaccharidosis VII cells corrected by a double-copy retrovirus vector. Gene Ther. 2:70–78 (1995).

    PubMed  CAS  Google Scholar 

  23. M. R. Islam, S. Tomatsu, G. N. Shah, J. H. Grubb, S. Jain, and W. S. Sly. Active site residues of human beta-glucuronidase. Evidence for Glu(540) as the nucleophile and Glu(451) as the acid-base residue. J. Biol. Chem. 274:23451–23455 (1999).

    Article  PubMed  CAS  Google Scholar 

  24. J. Jakobsson, C. Ericson, M. Jansson, E. Bjork, and C. Lundberg. Targeted transgene expression in rat brain using lentiviral vectors. J. Neurosci. Res. 73:876–885 (2003).

    Article  PubMed  CAS  Google Scholar 

  25. B. J. Wu, S. Tomatsu, S. Fukuda, K. Sukegawa, T. Orii, and W. S. Sly. Overexpression rescues the mutant phenotype of L176F mutation causing β-glucuronidase deficiency mucopolysaccharidosis in two Mennonite siblings. J. Biol. Chem. 269:23681–23688 (1994).

    PubMed  CAS  Google Scholar 

  26. N. Shi, and W. M. Pardridge. Noninvasive gene targeting to the brain. Proc. Natl. Acad. Sci. U.S.A. 97:7567–7572 (2000).

    Article  PubMed  CAS  Google Scholar 

  27. S. Skarlatos, and W. M. Pardridge. Targeting of an anti-CR3 (CD11b/CD18) monoclonal antibody to spleen, but not brain, in vivo in mice. J. Drug Target. 3:9–14 (1995).

    Article  PubMed  CAS  Google Scholar 

  28. G. Liu, I. Martins, J. A. Wemmie, J. A. Chiorini, and B. L. Davidson. Functional correction of CNS phenotypes in a lysosomal storage disease model using adeno-associated virus type 4 vectors. J. Neurosci. 25:9321–9327 (2005).

    Article  PubMed  CAS  Google Scholar 

  29. A. Bosch, E. Perret, N. Desmaris, D. Trono, and J. M. Heard. Reversal of pathology in the entire brain of mucopolysaccharidosis type VII mice after lentivirus-mediated gene transfer. Hum. Gene Ther. 11:1139–1150 (2000).

    Article  PubMed  CAS  Google Scholar 

  30. B. K. Berges, J. H. Wolfe, and N. W. Fraser. Stable levels of long-term transgene expression driven by the latency-associated transcript promoter in a herpes simplex virus type 1 vector. Mol. Ther. 12:1111–1119 (2005).

    Article  PubMed  CAS  Google Scholar 

  31. M. S. Sands, C. A. Vogler, K. K. Ohlemiller, M. S. Roberts, J. H. Grubb, B. Levy, et al. Biodistribution, kinetics, and efficacy of highly phosphorylated and non-phosphorylated beta-glucuronidase in the murine model of mucopolysaccharidosis VII. J. Biol. Chem. 276:43160–43165 (2001).

    Article  PubMed  CAS  Google Scholar 

  32. A. Urayama, J. H. Grubb, W. S. Sly, and W. A. Banks. Developmentally regulated mannose 6-phosphate receptor-mediated transport of a lysosomal enzyme across the blood–brain barrier. Proc. Natl. Acad. Sci. U.S.A. 101:12658–12663 (2004).

    Article  PubMed  CAS  Google Scholar 

  33. C. Vogler, N. Galvin, B. Levy, J. Grubb, J. Jiang, X. Y. Zhou, and W. S Sly. Transgene produces massive overexpression of human beta-glucuronidase in mice, lysosomal storage of enzyme, and strain-dependent tumors. Proc. Natl. Acad. Sci. U.S.A. 100:2669–2673 (2003).

    Article  PubMed  CAS  Google Scholar 

  34. C. Chu, Y. Zhang, R. J. Boado, and W. M. Pardridge. Decline in exogenous gene expression in primate brain following intravenous administration is due to plasmid degradation. Pharm. Res. 23:1586–1590 (2006).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William M. Pardridge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Wang, Y., Boado, R.J. et al. Lysosomal Enzyme Replacement of the Brain with Intravenous Non-Viral Gene Transfer. Pharm Res 25, 400–406 (2008). https://doi.org/10.1007/s11095-007-9357-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9357-6

Key words

Navigation