Abstract
Purpose
The delivery of non-viral plasmid DNA to brain across the blood-brain barrier (BBB) with intravenous administration of non-viral plasmid DNA encoding a lysosomal enzyme, β-glucuronidase (GUSB), was examined in GUSB null mice, a model of type VII mucopolysaccharidosis.
Methods
The plasmid, designated pCMV-GUSB, is encapsulated in Trojan horse liposomes, which are targeted across the BBB, and the brain cell membrane, with a monoclonal antibody to the mouse transferrin receptor.
Results
The GUSB enzyme activity was increased >50-fold in cell culture of fibroblasts obtained from GUSB null mice, following application of the antibody-targeted liposomes carrying the pCMV–GUSB, and enzyme activity remained high for >2 weeks. Adult GUSB null mice were treated with a single intravenous administration of 0.2 ml of Trojan horse liposomes carrying the pCMV–GUSB at a dose of 10 μg/mouse of plasmid DNA. The GUSB enzyme activity was increased greater than tenfold in brain, liver, spleen, lung, and kidney, but not in heart.
Conclusions
Intravenous Trojan horse liposome administration increased brain GUSB enzyme activity to the therapeutic range of brain GUSB enzyme activity. These studies show it is possible to deliver non-viral plasmid DNA encoding lysosomal enzymes to the brain following intravenous administration of receptor-specific Trojan horse liposomes.
Similar content being viewed by others
References
Y. A. Ioannou. Gene therapy for lysosomal storage disorders with neuropathology. J. Am. Soc. Nephrol. 11:1542–1547 (2000).
C. Martini, G. Ciana, A. Benettoni, F. Katouzian, G. M. Severini, R. Bussani, et al. Intractable fever and cortical neuronal glycogen storage in glycogenosis type 2. Neurology 57:906–908 (2001).
S. S. Elliger, C. A. Elliger, C. P. Aguilar, N. R. Raju, and G. L. Watson. Elimination of lysosomal storage in brains of MPS VII mice treated by intrathecal administration of an adeno-associated virus vector. Gene Ther. 6:1175–1178 (1999).
L. Xu, R. L. Mango, M. S. Sands, M. E. Haskins, N. M. Ellinwood, and K. P. Ponder. Evaluation of pathological manifestations of disease in mucopolysaccharidosis VII mice after neonatal hepatic gene therapy. Mol. Ther. 6:745–758 (2002).
M. A. Passini and J. H. Wolfe. Widespread gene delivery and structure-specific patterns of expression in the brain after intraventricular injections of neonatal mice with an adeno-associated virus vector. J. Virol. 75:12382–12392 (2001).
B. A. Karolewski and J. H. Wolfe. Genetic correction of the fetal brain increases the lifespan of mice with the severe multisystemic disease mucopolysaccharidosis type VII. Mol. Ther. 14:14–24 (2006).
A. F. Skorupa, K. J. Fisher, J. M. Wilson, M. K. Parente, and J. H. Wolfe. Sustained production of beta-glucuronidase from localized sites after AAV vector gene transfer results in widespread distribution of enzyme and reversal of lysosomal storage lesions in a large volume of brain in mucopolysaccharidosis VII mice. Exp. Neurol. 160:17–27 (1999).
C. H. Vite, M. A. Passini, M. E. Haskins, and J. H. Wolfe. Adeno-associated virus vector-mediated transduction in the cat brain. Gene Ther. 10:1874–1881 (2003).
W. M. Pardridge. Drug and gene delivery to the brain: the vascular route. Neuron 36:555–558 (2002).
N. Shi, Y. Zhang, C. Zhu, R. J. Boado, and W. M. Pardridge. Brain-specific expression of an exogenous gene after i.v. administration. Proc. Natl. Acad. Sci. U.S.A. 98:12754–12759 (2001).
N. Shi, R. J. Boado, and W. M. Pardridge. Receptor-mediated gene targeting to tissues in vivo following intravenous administration of pegylated immunoliposomes. Pharm. Res. 18:1091–1095 (2001).
Y. Zhang, F. Schlachetzki, and W.M. Pardridge. Global non-viral gene transfer to the primate brain following intravenous administration. Mol. Ther. 7:11–18 (2003).
D. C. Mash, J. Pablo, D. D. Flynn, S. M. Efange, and W. J. Weiner. Characterization and distribution of transferrin receptors in the rat brain. J. Neurochem. 55:1972–1979 (1990).
W. Zhao, H. Chen, H. Xu, E. Moore, N. Meiri, M. J. Quon, et al. Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J. Biol. Chem. 274:34893–34902 (1999).
E. H. Birkenmeier, M. T. Davisson, W. G. Beamer, R. E. Ganschow, C. A. Vogler, B. Gwynn, et al. Murine mucopolysaccharidosis type VII. Characterization of a mouse with beta-glucuronidase deficiency. J. Clin. Invest. 83:1258–1266 (1989).
J. W. Kyle, E. H. Birkenmeier, B. Gwynn, C. Vogler, P. C. Hoppe, J. W. Hoffmann, et al. Correction of murine mucopolysaccharidosis VII by a human beta-glucuronidase transgene. Proc. Natl. Acad. Sci. U.S.A. 87:3914–3918 (1990).
R. J. Boado, J. Y. Li, M. Nagaya, C. Zhang, and W. M. Pardridge. Selective expression of the large neutral amino acid transporter at the blood-brain barrier. Proc. Natl. Acad. Sci. U.S.A. 96:12079–12084 (1999).
R. J. Boado, J. Y. Li, C. Chu, F. Ogoshi, P. Wise, and W. M. Pardridge. Site-directed mutagenesis of cysteine residues of large neutral amino acid transporter LAT1. Biochim. Biophys. Acta 1715:104–110 (2005).
W. M. Pardridge. Gene targeting in vivo with pegylated immunoliposomes. Methods Enzymol. 373:507–528 (2003).
Y. Zhang, R. J. Boado, and W. M. Pardridge. Marked enhancement in gene expression by targeting the human insulin receptor. J. Genet. Med. 5:157–163 (2003).
M. R. Islam, J. H. Grubb, and W. S. Sly. C-terminal processing of human beta-glucuronidase. The propeptide is required for full expression of catalytic activity, intracellular retention, and proper phosphorylation. J. Biol. Chem. 268:22627–22633 (1993).
J. H. Wolfe, J. W. Kyle, M. S. Sands, W. S. Sly, D. G. Markowitz, and M. K. Parente. High level expression and export of beta-glucuronidase from murine mucopolysaccharidosis VII cells corrected by a double-copy retrovirus vector. Gene Ther. 2:70–78 (1995).
M. R. Islam, S. Tomatsu, G. N. Shah, J. H. Grubb, S. Jain, and W. S. Sly. Active site residues of human beta-glucuronidase. Evidence for Glu(540) as the nucleophile and Glu(451) as the acid-base residue. J. Biol. Chem. 274:23451–23455 (1999).
J. Jakobsson, C. Ericson, M. Jansson, E. Bjork, and C. Lundberg. Targeted transgene expression in rat brain using lentiviral vectors. J. Neurosci. Res. 73:876–885 (2003).
B. J. Wu, S. Tomatsu, S. Fukuda, K. Sukegawa, T. Orii, and W. S. Sly. Overexpression rescues the mutant phenotype of L176F mutation causing β-glucuronidase deficiency mucopolysaccharidosis in two Mennonite siblings. J. Biol. Chem. 269:23681–23688 (1994).
N. Shi, and W. M. Pardridge. Noninvasive gene targeting to the brain. Proc. Natl. Acad. Sci. U.S.A. 97:7567–7572 (2000).
S. Skarlatos, and W. M. Pardridge. Targeting of an anti-CR3 (CD11b/CD18) monoclonal antibody to spleen, but not brain, in vivo in mice. J. Drug Target. 3:9–14 (1995).
G. Liu, I. Martins, J. A. Wemmie, J. A. Chiorini, and B. L. Davidson. Functional correction of CNS phenotypes in a lysosomal storage disease model using adeno-associated virus type 4 vectors. J. Neurosci. 25:9321–9327 (2005).
A. Bosch, E. Perret, N. Desmaris, D. Trono, and J. M. Heard. Reversal of pathology in the entire brain of mucopolysaccharidosis type VII mice after lentivirus-mediated gene transfer. Hum. Gene Ther. 11:1139–1150 (2000).
B. K. Berges, J. H. Wolfe, and N. W. Fraser. Stable levels of long-term transgene expression driven by the latency-associated transcript promoter in a herpes simplex virus type 1 vector. Mol. Ther. 12:1111–1119 (2005).
M. S. Sands, C. A. Vogler, K. K. Ohlemiller, M. S. Roberts, J. H. Grubb, B. Levy, et al. Biodistribution, kinetics, and efficacy of highly phosphorylated and non-phosphorylated beta-glucuronidase in the murine model of mucopolysaccharidosis VII. J. Biol. Chem. 276:43160–43165 (2001).
A. Urayama, J. H. Grubb, W. S. Sly, and W. A. Banks. Developmentally regulated mannose 6-phosphate receptor-mediated transport of a lysosomal enzyme across the blood–brain barrier. Proc. Natl. Acad. Sci. U.S.A. 101:12658–12663 (2004).
C. Vogler, N. Galvin, B. Levy, J. Grubb, J. Jiang, X. Y. Zhou, and W. S Sly. Transgene produces massive overexpression of human beta-glucuronidase in mice, lysosomal storage of enzyme, and strain-dependent tumors. Proc. Natl. Acad. Sci. U.S.A. 100:2669–2673 (2003).
C. Chu, Y. Zhang, R. J. Boado, and W. M. Pardridge. Decline in exogenous gene expression in primate brain following intravenous administration is due to plasmid degradation. Pharm. Res. 23:1586–1590 (2006).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, Y., Wang, Y., Boado, R.J. et al. Lysosomal Enzyme Replacement of the Brain with Intravenous Non-Viral Gene Transfer. Pharm Res 25, 400–406 (2008). https://doi.org/10.1007/s11095-007-9357-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11095-007-9357-6