iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s11075-022-01403-x
Local and parallel stabilized finite element methods based on two-grid discretizations for the Stokes equations | Numerical Algorithms Skip to main content
Log in

Local and parallel stabilized finite element methods based on two-grid discretizations for the Stokes equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Based on two-grid discretizations, some local and parallel stabilized finite element methods are proposed and investigated for the Stokes problem in this paper. For the finite element discretization, the lowest equal-order finite element pairs are chosen to circumvent the discrete inf-sup condition. In these algorithms, we derive the low-frequency components of the solution for the Stokes problem on a coarse grid and catch the high-frequency components on a fine grid using some local and parallel procedures. Optimal error bounds are demonstrated and some numerical experiments are carried out to support theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Adams, R.: Sobolev Spaces. Academaic Press Inc, New York (1975)

    MATH  Google Scholar 

  2. Bedivan, D.M.: A two-grid method for solving elliptic problems with inhomogeneous boundary conditions. Comput. Math. Appl. 29(6), 59–66 (1995)

    MathSciNet  MATH  Google Scholar 

  3. Bi, H., Yang, Y.D., Li, H.: Local and parallel finite element discretizations for eigenvalue problems. SIAM J. Sci. Comput. 35(6), A2575–A2597 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Bochev, P.B., Dohrmann, C.R., Gunzburger, M.D.: Stabilization of low-order mixed finite elements for the Stokes equations. SIAM J. Numer. Anal. 44(1), 82–101 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Bramble, J.H., Ewing, R.E., Parashkevov, R.R., Pasciak, J.E.: Domain decomposition methods for problems with partial refinement. SIAM J. Sci. Comput. 13(1), 397–410 (1992)

    MathSciNet  MATH  Google Scholar 

  6. Brezzi, F., Douglas, J.: Stabilized mixed methods for the Stokes problem. Numer. Math, pp. 225–235 (1988)

  7. Codina, R., Blasco, J.: Analysis of a pressure-stabilized finite element approximation of the stationary Navier-Stokes equations. Numer. Math. 87, 59–81 (2000)

    MathSciNet  MATH  Google Scholar 

  8. Dohrmann, C.R., Bochev, P.B.: A stabilized finite element method for the Stokes problem based on polynomial pressure projections. Int. J. Numer. Methods. Fluids. 46(2), 183–201 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Dong, X.J., He, Y.N.: A parallel finite element method for incompressible magnetohydrodynamics equations. Appl. Math. Lett. 102, 106076 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Dong, X.J., He, Y.N., Wei, H.B., Zhang Y.H.: Local and parallel finite element algorithm based on the partition of unity method for the incompressible MHD flow. Adv. Comput. Math (2017)

  11. Du, G.Z., Hou, Y.R., Zuo, L.Y.: Local and parallel finite element methods for the mixed Navier-Stokes/Darcy model. Int. J. Comput. Math, pp. 1155–1172 (2016)

  12. Du, G.Z., Zuo, L.Y.: Local and parallel finite element method for the mixed Navier-Stokes/Darcy model with Beavers-Joseph interface conditions. Acta. Math. Sci. 37(05), 1331–1347 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Du, G.Z., Zuo, L.Y.: A parallel partition of unity scheme based on two-grid discretizations for the Navier-Stokes problem. J. Sci. Comput. 75(3), 1445–1462 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Du, G.Z., Zuo, L.Y.: Local and parallel finite element methods for the coupled Stokes/Darcy model. Numer. Algorithms 87, 1593–1611 (2021)

    MathSciNet  MATH  Google Scholar 

  15. Du, G.Z., Zuo, L.Y., Zhang, Y.H.: A new local and parallel finite element method for the coupled Stokes-Darcy model. J. Sci. Comput. 90(1), 1–21 (2022)

    MathSciNet  MATH  Google Scholar 

  16. Girault, V., Raviart, P.A.: Finite element approximation of the Navier-Stokes equations. Springer-Verlag (1979)

  17. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

  18. He, Y.N., Li, J.: A stabilized finite element method based on local polynomial pressure projection for the stationary Navier-Stokes equations. Appl. Numer. Math. 58(10), 1503–1514 (2008)

    MathSciNet  MATH  Google Scholar 

  19. He, Y.N., Xu, J.C., Zhou, A.H.: Local and parallel finite element algorithms for the Navier-Stokes problem. J. Comput. Math. 24(3), 227–238 (2006)

    MathSciNet  MATH  Google Scholar 

  20. He, Y.N., Xu, J.C., Zhou, A.H., Li, J.: Local and parallel finite element algorithms for the Stokes problem. Numer. Math. 109, 415–434 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Hou, Y.R., Shi, F., Zheng, H.B.: Expandable local and parallel two-grid finite element scheme for the Stokes equations. Numer. Anal. (2020)

  22. Li, J., He, Y.N.: A stabilized finite element method based on two local Gauss integrations for the Stokes equations. J Comput Appl Math 214(1), 58–65 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Li, J., He, Y.N., Chen, Z.X.: Performance of several stabilized finite element methods for the Stokes equations based on the lowest equal-order pairs. Computing 86(1), 37–51 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Li, Q.T., Du, G.Z.: Local and parallel finite element methods based on two grid discretizations for unsteady convection-diffusion problem. Numer. Methods Partial Differ Equ 37(6), 3023–3041 (2021)

    MathSciNet  Google Scholar 

  25. Li, Q.T., Du, G.Z.: Local and parallel finite element methods based on two-grid discretizations for the nonstationary Navier-Stokes equations. Numer. Algorithms, pp. 1–22 (2021)

  26. Lin, F.B., Cao, J.Y., Liu, Z.X.: The local and parallel finite element scheme for electric structure eigenvalue problems. Math. Probl. Eng. Article ID, pp. 1049917 (2021)

  27. Ma, F.Y., Ma, Y.C., Wo, W.F.: Local and parallel finite element algorithms based on two-grid discretization for steady Navier-Stokes equations. Appl. Math. Mech. (2007)

  28. Matthies, G., Skrzypacz, P., Tobiska, L.: Stabilization of local projection type applied to convection-diffusion problems with mixed boundary conditions. Electron. Trans. Numer. Anal. Etna. 32, 90–105 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Melenk, J.M., Babus̆ka, I.: The partition of unity finite element method: basic theory and applications. Comput. Methods. Appl. Mech. Eng. 139(1–4), 289–314 (1996)

    MathSciNet  Google Scholar 

  30. Shang, Y.Q.: A parallel subgrid stabilized finite element method based on fully overlapping domain decomposition for the Navier-Stokes equations. J. Math. Anal. Appl. 403, 667–679 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Shang, Y.Q.: Parallel defect-correction algorithms based on finite element discretization for the Navier-Stokes equations. Comput Fluids 79, 200–212 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Shang, Y.Q.: A parallel stabilized finite element method based on the lowest equal-order elements for incompressible flows. Computing 102(1), 65–81 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Shang, Y.Q., He, Y.N.: Parallel finite element algorithm based on full domain partition for stationary Stokes equations. Appl. Math. Mech. Engl. Ed. 31(5), 643–650 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Shang, Y.Q., He, Y.N.: Parallel iterative finite element algorithms based on full domain partition for the stationary Navier-Stokes equations. Appl. Numer. Math. 60(7), 719–737 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Shang, Y.Q., He, Y.N., Luo, Z.D.: A comparison of three kinds of local and parallel finite element algorithms based on two-grid discretizations for the stationary Navier-Stokes equations. Comput. Fluids 40(1), 249–257 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Shang, Y.Q., Wang, K.: Local and parallel finite element algorithms based on two-grid discretizations for the transient Stokes equations. Numer. Algorithms 54(2), 195–218 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Song, L.N., Gao, M.M.: A posteriori error estimates for the stabilization of low-order mixed finite elements for the Stokes problem. Comput. Methods Appl. Mech. Eng. 279, 410–424 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Song, L.N., Hou, Y.R., Zheng, H.B.: The two-grid stabilization of equal-order finite elements for the stokes equations. Int. J. Numer. Methods Fluids 67, 2054–2061 (2011)

    MathSciNet  MATH  Google Scholar 

  39. Wang, A.W., Li, J., Xie, D.X.: Stabilization of the lowest-order mixed finite elements based on the local pressure projection for steady Navier-Stokes equations. Chinese J. Eng. Math. 27(2), 249–257 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Wang, J.P., Ye, X.: A weak Galerkin finite element method for the Stokes equations. Adv. Comput. Math. 42(1), 155–174 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Wang, X.H., Du, G.Z., Zuo, L.Y.: A novel local and parallel finite element method for the mixed Navier-Stokes-Darcy problem. Comput. Math. Appl. 90, 73–79 (2021)

    MathSciNet  MATH  Google Scholar 

  42. Xie, C., Zheng, H.B.: A parallel variational multiscale method for incompressible flows based on the partition of unity. Int. J. Numer. Anal. Model 11(4), 854–865 (2014)

    MathSciNet  MATH  Google Scholar 

  43. Xu, J.C., Zhou, A.H.: Local and parallel finite element algorithms based on two-grid discretizations. Math. Comput. 69(231), 881–909 (2000)

    MathSciNet  MATH  Google Scholar 

  44. Xu, J.C., Zhou, A.H.: Local and parallel finite element algorithms based on two-grid discretizations for nonlinear problems. Adv. Comput. Math. 14(4), 293–327 (2001)

    MathSciNet  MATH  Google Scholar 

  45. Yu, J.P., Shi, F., Zheng, H.B.: Local and parallel finite element algorithms based on the partition of unity for the stokes problem. Siam J. Sci. Comput. 36(5), C547–C567 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Zheng, B., Shang, Y.Q.: Local and parallel stabilized finite element algorithms based on the lowest equal-order elements for the steady Navier-Stokes equations. Math. Comput. Simul. 178, 464–484 (2020)

    MathSciNet  MATH  Google Scholar 

  47. Zheng, H.B., Yu, J.P., Shi, F.: Local and parallel finite element method based on the partition of unity for incompressible flow. J. Sci. Comput. 65(2), 512–532 (2015)

    MathSciNet  MATH  Google Scholar 

  48. Zheng, H.B., Song, L.N., Hou, Y.R., Zhang, Y.H.: The partition of unity parallel finite element algorithm. Adv. Comput. Math. 41(4), 937–951 (2015)

    MathSciNet  MATH  Google Scholar 

  49. Zhang, Y.H., Hou, Y.R., Shan, L., Dong, X.J.: Local and parallel finite element algorithm for stationary incompressible magnetohydrodynamics. Numer. Meth. Part. D E 33(5), 1513–1539 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for their constructive comments, which allowed for the improvement of the presentation of the results.

Funding

This work is subsidized by the National Natural Science Foundation of China (No. 12172202), the Natural Science Foundation of Shandong Province (No. ZR2021MA063), the Support Plan for Outstanding Youth Innovation Team in Shandong Higher Education Institutions (No. 2021KJ037), the Natural Science Foundation of Shaanxi Province (No. 2021JQ-426), and the Scientific Research Program of Shaanxi Provincial Education Department (No. 21JK0935).

Author information

Authors and Affiliations

Authors

Contributions

Xinhui Wang: formal analysis, visualization, writing, review. Guangzhi Du: conceptualization, methodology, validation, review. All authors reviewed the manuscript.

Corresponding author

Correspondence to Guangzhi Du.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Du, G. Local and parallel stabilized finite element methods based on two-grid discretizations for the Stokes equations. Numer Algor 93, 67–83 (2023). https://doi.org/10.1007/s11075-022-01403-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01403-x

Keywords

Navigation