iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s11075-009-9291-2
Constancy maximization based weight optimization in high dimensional model representation | Numerical Algorithms Skip to main content
Log in

Constancy maximization based weight optimization in high dimensional model representation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This work focuses on the weight function optimization in high dimensional model representation (HDMR) via constancy maximization. There are a lot of circumstances where HDMR’s weight function becomes completely flexible in its factors. The univariate coordinate changes which can be constructed to produce nonnegative factors in the integrands of HDMR component, are perhaps the most important ones of these cases. Here, the weight function is considered as the square of a linear combination of certain basis functions spanning an appropriately chosen Hilbert space. Then, the coefficients of these linear combinations are determined to maximize the HDMR’s constant term contribution to the function. Although the resulting equations are nonlinear we could have been able to approximate the solutions by using recently proven fluctuationlessness theorem on matrix representations appearing in the equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sobol, I.M.: Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exper. (MMCE) 1(4) 407 (1993)

    MATH  MathSciNet  Google Scholar 

  2. Rabitz, H., Alış, Ö.: General foundations of high dimensional model representations. J. Math. Chem. 25, 197–233 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alış, Ö., Rabitz, H.: Efficient implementation of high dimensional model representations. J. Math. Chem. 29, 127–142 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Li, G., Rosenthal, C., Rabitz, H.: High dimensional model representations. J. Math. Chem. A 105, 7765–7777 (2001)

    MathSciNet  Google Scholar 

  5. Demiralp, M., Tunga, M.A.: High dimensional model representation of multivariate interpolation via hypergrids. In: The Sixteenth International Symposium on Computer and Information Sciences (ISCIS XVI), pp. 416–423 (2001)

  6. Demiralp, M.: High dimensional model representations and its application varieties. Math. Res. 9, 146–159 (2003)

    MathSciNet  Google Scholar 

  7. Tunga, M.A., Demiralp, M.: Bound analysis in univariately truncated generalized high dimensional model representation for random-data partitioning: interval GHDMR. Appl. Numer. Math. (2008). doi:10.1016/j.apnum.2008.06.006

    MATH  Google Scholar 

  8. Tunga, M.A., Demiralp, M.: Computational complexity investigations for high dimensional model representation algorithms used in multivariate interpolation problems. In: 12th WSEAS International Conference on Applied Mathematics, pp. 133–139, Cairo, 29–31 December 2007

  9. Tunga, M.A., Demiralp, M.: A factorized high dimensional model representation on the partitioned random discrete data. Appl. Numer. Anal. Comput. Math. 1, 231–241 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Tunga, M.A., Demiralp, M.: A factorized high dimensional model representation on the nodes of a finite hyperprismatic regular grid. Appl. Math. Comput. 164, 865–883 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Sobol, I.M.: Theorems and examples on high dimensional model representation. Reliab. Eng. Syst. Saf. 79, 187–193 (2003)

    Article  Google Scholar 

  12. Ziehn, T., Tomlin, A.S.: A global sensitivity study of sulfur chemistry in a premixed methane flame model using HDMR. Int. J. Chem. Kinet. 40, 742–753 (2008)

    Article  Google Scholar 

  13. Ziehn, T., Tomlin, A.S.: Global sensitivity analysis of a 3-dimensional street canyon model—part I: the development of high dimensional model representations. Atmos. Environ. 42, 1857–1873 (2008)

    Article  Google Scholar 

  14. Ratto, M.: Analysing DSGE models with global sensitivity analysis. Comput. Econ. 31, 115–139 (2008)

    Article  MATH  Google Scholar 

  15. Ratto, M., Pagano, A., Young, P.: State dependent parameter metamodelling and sensitivity analysis. Comput. Phys. Commun. 177, 863–876 (2007)

    Article  Google Scholar 

  16. Gomez, M.C., Tchijov, V., Leon, F., Aguilar, A.: A tool to improve the execution time of air quality models. Environ. Model. Softw. 23, 27–34 (2008)

    Article  Google Scholar 

  17. Manzhos, S., Carrington, T.: A random-sampling high dimensional model representation neural network for building potential energy surfaces. J. Chem. Phys. 125, 084109 (2006)

    Article  Google Scholar 

  18. Rao, B.N., Chowdhury, R.: Factorized high dimensional model representation for structural reliability analysis. Eng. Comput. 25, 708–738 (2008)

    Article  Google Scholar 

  19. Chowdhury, R., Rao, B.N.: Assessment of high dimensional model techniques for reliability analysis. Probab. Eng. Mech. 24, 100–115 (2009)

    Article  Google Scholar 

  20. Tunga, M.A., Demiralp, M.: Data partitioning via generalized high dimensional model representation (GHDMR) and multivariate interpolative applications. Math. Res. 9, 447–462 (2003)

    Google Scholar 

  21. Demiralp, M.: A new fluctuation expansion based method for the univariate numerical integration under Gaussian weights. In: WSEAS-2005 Proceedings, WSEAS 8-th International Conference on Applied Mathematics, pp. 68–73. Tenerife, 16–18 December 2005

  22. Demiralp, M.: Convergence issues in the gaussian weighted multidimensional fluctuation expansion for the univariate numerical integration. WSEAS Trans. Math. 4, 486–492 (2005)

    MathSciNet  Google Scholar 

  23. Demiralp, M.: Fluctuationlessness theorem to approximate univariate functions matrix representations. WSEAS Trans. Math. (in press)

  24. Oevel, W., Postel, F., Wehmeier, S., Gerhard, J.: The MuPAD Tutorial. Springer, Berlin (2000)

    Google Scholar 

  25. Li, G., Wang, S., Rosenthal, C., Rabitz, H.: High dimensional model representations generated from low dimensional data samples. I. mp-Cut-HDMR. J. Math. Chem. 30, 1 (2001)

    MathSciNet  Google Scholar 

  26. Rabitz, H., Alış, Ö., Shorter, J., Shimd, K.: Efficient input-output model representations. Comput. Phys. Commun. 117, 11–20 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burcu Tunga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tunga, B., Demiralp, M. Constancy maximization based weight optimization in high dimensional model representation. Numer Algor 52, 435–459 (2009). https://doi.org/10.1007/s11075-009-9291-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-009-9291-2

Keywords

PACS

Navigation