Abstract
We prove that it is possible to construct Bernstein-type operators in any given Extended Chebyshev space and we show how they are connected with blossoms. This generalises and explains a recent result by Aldas/Kounchev/Render on exponential spaces. We also indicate why such operators automatically possess interesting shape preserving properties and why similar operators exist in still more general frameworks, e.g., in Extended Chebyshev Piecewise spaces. We address the problem of convergence of infinite sequences of such operators, and we do prove convergence for special instances of Müntz spaces.
Similar content being viewed by others
References
Aldaz, J.M., Kounchev, O., Render, H.: Bernstein Operators for Exponential Polynomials. Constr. Approx. (2008, Online)
Bernstein, S.: Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités. Comm. Soc. Math. Kharkov 13, 1–2 (1912)
Bister, D.: Ein neuer Zugang für eine verallgemeinerte Klasse von Tschebyscheff-Splines. Dissertation, 15 November 1996, Shaker Verlag, Aachen (1997)
Bister, D., Prautzsch, H.: A new approach to Tchebycheffian B-splines. In: Curves and Surfaces with Applications in CAGD, pp. 35–41. Vanderbilt University Press, Nashville (1997)
Carnicer, J.-M., Peña, J.-M.: Total positivity and optimal bases. In: Gasca, M., Micchelli, C.A. (eds.) Total Positivity and its Applications, pp. 133–155. Kluwer Academic, Boston (1996)
Carnicer, J.-M., Mainar, E., Peña, J.-M.: Critical length for design purposes and extended Chebyshev spaces. Constr. Approx. 20, 55–71 (2004)
Costantini, P.: Curve and surface construction using variable degree polynomial splines. Comput. Aided Geom. Des. 17, 419–446 (2000)
Costantini, P., Lyche, T., Manni, C.: On a class of weak Tchebycheff systems. Numer. Math. 101, 333–354 (2005)
Goodman, T.N.T.: Total positivity and the shape of curves. In: Gasca, M., Micchelli, C.A. (eds.) Total Positivity and its Applications, pp. 157–186. Kluwer Academic, Bosotn (1996)
Karlin, S.: Total positivity. Stanford Univ. Press, Stanford (1968)
Karlin, S.J., Studden, W.J.: Tchebycheff Systems: with applications in analysis and statistics. Wiley Interscience, N.Y. (1966)
Korovkin, P.P.: Linear operators and approximation theory. Hindustan Publ. Corp., Delhi (1960)
Lorentz, G.G.: Bernstein Polynomials, 2nd edn. Chelsea, NY (1986)
Manni, C., Mazure, M.-L.: Shape constraints and optimal bases for C 1 Hermite interpolatory subdivision schemes (preprint)
Mazure, M.-L.: Chebyshev spaces with polynomial blossoms. Adv. Comput. Math. 10, 219–238 (1999)
Mazure, M.-L.: Blossoming: a geometrical approach. Constr. Approx. 15, 33–68 (1999)
Mazure, M.-L.: Chebyshev-Bernstein bases. Comput. Aided Geom. Des. 16, 649–669 (1999)
Mazure, M.-L.: Blossoms and optimal bases. Adv. Comput. Math. 20, 177–203 (2004)
Mazure, M.-L.: Chebyshev spaces and Bernstein bases. Constr. Approx. 22, 347–363 (2005)
Mazure, M.-L.: Ready-to-blossom bases in Chebyshev spaces. In: Jetter, K., Buhmann, M., Hauss-mann, W., Schaback, R., Stoeckler, J. (eds.) Topics in Multivariate Approximation and Interpolation, pp. 109–148. Elsevier, New York (2006)
Mazure, M.-L.: On Chebyshevian spline subdivision. J. Approx. Theory 143, 74–110 (2006)
Mazure, M.-L.: Extended Chebyshev piecewise spaces characterised via weight functions. J. Approx. Theory 145, 33–54 (2007)
Mazure, M.-L.: On dimension elevation in quasi extended Chebyshev spaces. Numer. Math. 109, 459–475 (2008)
Mazure, M.-L.: Which spaces for design. Numer. Math. 110, 357–392 (2008)
Mazure, M.-L.: On differentiation formulæ for Chebyshevian Bernstein and B-spline bases. Jaén Journal on Approximations (in press)
Mazure, M.-L., Pottmann, H.: Tchebycheff curves. In: Total Positivity and its Applications, pp. 187–218. Kluwer Academic, Boston (1996)
Morigi, S., Neamtu, M.: Some results for a class of generalized polynomials. Adv. Comput. Math. 12, 133–149 (2000)
Pottmann, H.: The geometry of Tchebycheffian splines. Comput. Aided Geom. Des. 10, 181–210 (1993)
Ramshaw, L.: Blossoms are polar forms. Comput. Aided Geom. Des. 6, 323–358 (1989)
Schumaker, L.L.: Spline functions. Wiley Interscience, N.Y. (1981)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mazure, ML. Bernstein-type operators in Chebyshev spaces. Numer Algor 52, 93–128 (2009). https://doi.org/10.1007/s11075-008-9260-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-008-9260-1
Keywords
- Bernstein-type bases
- Bernstein-type operators
- Extended Chebyshev spaces
- Total positivity
- Shape preservation
- Blossoms