iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s11071-011-0066-7
On the analysis of bipolar transistor based chaotic circuits: case of a two-stage colpitts oscillator | Nonlinear Dynamics Skip to main content
Log in

On the analysis of bipolar transistor based chaotic circuits: case of a two-stage colpitts oscillator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We perform a systematic analysis of a system consisting of a two-stage Colpitts oscillator. This well-known chaotic oscillator is a modification of the standard Colpitts oscillator obtained by adding an extra transistor and a capacitor to the basic circuit. The two-stage Colpitts oscillator exhibits better spectral characteristics compared to a classical single-stage Colpitts oscillator. This interesting feature is suitable for chaos-based secure communication applications. We derive a smooth mathematical model (i.e., sets of nonlinear ordinary differential equations) to describe the dynamics of the system. The stability of the equilibrium states is carried out and conditions for the occurrence of Hopf bifurcations are obtained. The numerical exploration reveals various bifurcation scenarios including period-doubling and interior crisis transitions to chaos. The connection between the system parameters and various dynamical regimes is established with particular emphasis on the role of both bias (i.e., power supply) and damping on the dynamics of the oscillator. Such an approach is particularly interesting as the results obtained are very useful for design engineers. The real physical implementation (i.e., use of electronic components) of the oscillator is considered to validate the theoretical analysis through several comparisons between experimental and numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990)

    Article  MathSciNet  Google Scholar 

  2. Yang, T.: A survey of chaotic secure communication systems. Int. J. Comput. Cogn. 2(2), 81–130 (2004)

    Google Scholar 

  3. Silva, C.P., Young, A.M.: Introduction to chaos-based communications and signal processing. In: Proc. IEEE Aerospace conf., Big Sky, MT (USA), pp. 279–299 (2000)

    Google Scholar 

  4. Fotsin, H.B., Daafouz, J.: Adaptive synchronization of uncertain chaotic Colpitts oscillators based on parameter identification. Phys. Lett. A 339, 304–315 (2005)

    Article  MATH  Google Scholar 

  5. Effa, J.Y., Essimbi, B.Z., Ngudam, J.M.: Synchronization of improved chaotic Colpitts oscillators using nonlinear feedback control. Nonlinear Dyn. 58, 39–47 (2009)

    Article  MATH  Google Scholar 

  6. Kennedy, M.P.: Chaos in the Colpitts oscillator. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 41, 771–774 (1994)

    Article  Google Scholar 

  7. Maggio, G.M., De Feo, O., Kennedy, M.P.: Nonlinear analysis of the Colpitts oscillator and application to design. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 46, 1118–1130 (1999)

    Article  MATH  Google Scholar 

  8. Zhang, J.: Investigation of chaos and nonlinear dynamical behaviour in two different self-driven oscillators. Ph.D. thesis, University of London (2001)

  9. Zhang, J., Chen, X., Davies, A.C.: Loop gain and its association with the nonlinear behaviour and chaos in a transformer coupled oscillator. Int. J. Bifurc. Chaos 14, 2503–2512 (2004)

    Article  MATH  Google Scholar 

  10. Hosokawa, Y., Nishio, Y., Ushida, A.: Analysis of chaotic phenomenon in two RC phase shift oscillators coupled by a diode. IEICE Trans. Fundam. Phys. E84-A(9), 2288–2295 (2001)

    Google Scholar 

  11. Rulkov, N.F., Volkovskii, A.R.: Generation of broad-band chaos using blocking oscillator. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 48, 673–679 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Andreyev, Y.V., Dmitriev, A.S., Efremova, E.V., Khilinsky, A.D., Kuzmin, L.V.: Qualitative theory of dynamical systems, chaos and contemporary wireless communications. Int. J. Bifurc. Chaos 15, 3639–3651 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chedjou, J.C., Kyamakya, K., Nguyen, V.D., Moussa, I., Kengne, J.: Performance evaluation of analog systems simulation methods for the analysis of nonlinear and chaotic modules in communications. ISAST Trans. Electron. Sign. Processing 2, 71–82 (2008)

    Google Scholar 

  14. Glenn, C.M.: Synthesis of a fully-integrated digital signal source for communication from chaotic dynamics-based oscillations. Ph.D. thesis, Johns Hopkins University (2003)

  15. Kengne, J., Chedjou, J.C., Kyamakya, K.: Stability and bifurcation analysis in electronic oscillators: Theory and some experiments. In: Proc. of the XV Int. Symp. on Theoretical Elect. Eng. (ISTET’09) Lueberg, Germany, pp. 173–177. (2009)

    Google Scholar 

  16. Bumeliene, S., Tamasevicius, A., Mykolaitis, G., Bazaliauskas, A., Lindberg, E.: Numerical investigation and experimental demonstration of chaos from two-stage Colpitts oscillator in the Ultrahigh frequency range. Nonlinear Dyn. 44, 167–172 (2006)

    Article  MATH  Google Scholar 

  17. Bumeliene, S., Tamasevicius, A., Mykolaitis, G., Baziliauskas, A., Lindberg, E.: Numerical investigation and experimental demonstration of chaos from two-stage Colpitts oscillator. Nonlinear Dyn. 44, 39–47 (2006)

    Article  Google Scholar 

  18. Tamasevicius, A., Mykolaitis, G., Bumeliene, S., Cenys, A., Anagnostopoulos, A.N., Lindberg, E.: Two-stage chaotic Colpitts oscillator. Electron. Lett. 37, 549–551 (2001)

    Article  Google Scholar 

  19. Mahmoud, G.M., Aly, S.A., AL-Kashif, M.A.: Dynamical properties and chaos synchronization of a new chaotic complex nonlinear system. Nonlinear Dyn. 51, 171–181 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dadras, S., Momeni, H.R., Qi, G.: Analysis of a new 3D smooth autonomous system with different wing chaotic attractors and transient chaos. Nonlinear Dyn. 62, 391–405 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Field. Springer, New York (1983)

    Google Scholar 

  22. Chua, L.O., Wu, C.W., Huang, A., Zhong, G.Q.: A universal circuit for studying and generating chaos—Part I: Routes to chaos. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 40, 731–744 (1993)

    Google Scholar 

  23. Chedjou, J.C., Kyamakya, K., Moussa, I., Kuchenbecker, H.P., Matis, W.: Behavior of a self-sustained electromechanical transducer and routes to chaos. J. Vib. Acoust. 128, 282–293 (2006)

    Article  Google Scholar 

  24. Kennedy, M.P.: Three steps to chaos—Part II: A Chua’s circuit primer. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 40, 657–674 (1993)

    Article  MATH  Google Scholar 

  25. Cenys, A., Tamasevicius, A., Baziliauskas, A., Krivickas, R., Lindberg, E.: Hyperchaos in coupled Colpitts oscillators. Chaos Solitons Fractals 17, 349–353 (2003)

    Article  MATH  Google Scholar 

  26. Hamill, D.C.: Learning about chaotic circuits with SPICE. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 36(1), 28–35 (1993)

    Google Scholar 

  27. Bennettin, G., Galgani, L., Strelcyn, J.M.: Kolmogorov entropy and numerical experiments. Phys. Rev. A 14, 2338–2345 (1976)

    Article  Google Scholar 

  28. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications in Physics, Biology, Chemistry and Engineering. Addison-Wesley, New York (1994)

    Google Scholar 

  29. Medio, A.: Chaotic Dynamics: Theory and Applications in Economics. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  30. Antognetti, P., Kuznetzov, G.: Semiconductor Device Modelling with SPICE, 2nd edn. McGraw-Hill, New York (1993)

    Google Scholar 

  31. Franco, S.: Operational Amplifiers and Analog Integrated Circuits. McGraw-Hill, New York (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kengne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kengne, J., Chedjou, J.C., Fono, V.A. et al. On the analysis of bipolar transistor based chaotic circuits: case of a two-stage colpitts oscillator. Nonlinear Dyn 67, 1247–1260 (2012). https://doi.org/10.1007/s11071-011-0066-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0066-7

Keywords

Navigation