iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s11071-005-2790-3
Dimension Reduction of Dynamical Systems: Methods, Models, Applications | Nonlinear Dynamics Skip to main content
Log in

Dimension Reduction of Dynamical Systems: Methods, Models, Applications

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

After presenting some basic introductory ideas concerning dimension reduction and reduced order modelling, an overview of the contents of the papers collected in this Special Issue of Nonlinear Dynamics is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alaggio, R. and Rega, G., ‘Characterizing bifurcations and classes of motion in the transition to chaos through 3D tori of a continuous experimental system in solid mechanics’, Physica D 137, 2000, 70–93.

    Google Scholar 

  2. Arnold, V. I., Ordinary Differential Equations, MIT Press, Boston, MA, 1978.

    Google Scholar 

  3. Beletsky, V. V. and Levin, E. M., Dynamics of Space Tether Systems, Advances in the Astronautical Sciences, Vol. 83, American Astronautical Society, 1993.

  4. Brunovsky, P., ‘Theory of invariant manifolds and its applications to differential equations’, UTMS 93–41, University of Tokyo, Department of Mathematical Sciences, 1993.

  5. Cusumano, J. P. and Sharkady, M. T., ‘An experimental study of bifurcation, chaos and dimensionality in a system forced through a bifurcation parameter’, Nonlinear Dynamics 8, 1995, 467–489.

    Article  Google Scholar 

  6. Golubitsky, M., Stewart, I., and Schaeffer, D., Singularities and Groups in Bifurcation Theory, Applied Mathematical Sciences, Vols. 1 and 2, Springer-Verlag, New York, 1985.

  7. Guckenheimer, J., ‘Book Review: Infinite-Dimensional Dynamical Systems in Mechanics and Physics’, by R. Temam, Bulletin of the AMS, Vol. 21, 1989, pp. 196–198.

  8. Guckenheimer, J. and Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, Vol. 42, Springer-Verlag, New York, 1983.

  9. Korontinis, K. E. and Trummer, M. R., ‘A finite difference scheme for computing inertial manifolds’, ZAMP 46, 1995, 419–444.

    Article  Google Scholar 

  10. Bloch, A. M. and Titi, E. S., ‘On the dynamics of rotating elastic beams’, in New Trends in Systems Theory, Birkhäuser, Boston, MA, 1990, pp. 128–135.

    Google Scholar 

  11. Foias, C., Jolly, M. S., Kevrekidis, I. G., Sell, G. R., and Titi, E. S., ‘On the computation of inertial manifolds’, Physics Letters A 131, 1988, 433–437.

    Article  Google Scholar 

  12. Carr, J., Applications of Centre Manifold Theory, Applied Mathematical Sciences, Vol. 35, Springer-Verlag, New York.

  13. Georgiou, I. T., ‘On the global geometric structure of the dynamics of the elastic pendulum’, Nonlinear Dynamics 18, 1999, 51–68.

    Article  MathSciNet  Google Scholar 

  14. Schagerl, M., Steindl, A., Steiner, W., and Troger, H., ‘On the paradox of the free falling folded chain’, Acta Mechanica 125, 1997, 155–168.

    Article  Google Scholar 

  15. Shaw, S. W. and Pierre, C., ‘Normal modes for nonlinear vibratory systems’, Journal of Sound and Vibration 164, 1993, 85–124.

    Article  Google Scholar 

  16. Vakakis, A. F., Manevitch, L. I., Mikhlin, Y. V., Pilipchuk, V. N., and Zevin, A. A., Normal Modes and Localization in Nonlinear Systems, Wiley Series in Nonlinear Science, Wiley, New York, 1996.

  17. Holmes, P., Lumley, J. L., and Berkooz, G., Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press, New York, 1996.

    Google Scholar 

  18. Sirovich, L., ‘Turbulence and the dynamics of coherent structures. Part I: Coherent structures; Part II: Symmetries and transformations; Part III: Dynamics and scaling’, Quaterly of Applied Mathematics XLV, 1987, 561–590.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Rega.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rega, G., Troger, H. Dimension Reduction of Dynamical Systems: Methods, Models, Applications. Nonlinear Dyn 41, 1–15 (2005). https://doi.org/10.1007/s11071-005-2790-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-005-2790-3

Key Words

Navigation