Abstract
In this work, a novel hybrid algorithm has been developed for achieving imperceptible and robust image steganography for secure data communication. The novelty of the work lies in the careful manipulation of higher frequency coefficient of Discrete Cosine Transform (DCT) to maintain the perceptual quality of the image followed by embedding secret bits in the controlled DCT coefficients using random locations identified by deterministic Coupled Chaotic Map (CCM). The randomness of the CCM map is confirmed by National Institute of Standards and Technology, DIEHARD, ENT and TestU01 test suites. The experimental results demonstrate that the proposed technique has excellent stego-image quality keeping zero Bit Error Rate at maximum embedding capacity (EC). The proposed method has capability to withstand against malicious users as well as outperforms existing steganography techniques in terms of EC, and Peak Signal to Noise Ratio. The security of the proposed technique is subsequently examined by the key length, key sensitivity parameter and histogram analysis.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Anees, A., Siddiqui, A. M., Ahmed, J., & Hussain, I. (2014). A technique for digital steganography using chaotic maps. Nonlinear Dynamics, 75(4), 807–816.
Bhowal, K., Bhattacharyya, D., Pal, A. J., & Kim, T. H. (2013). A GA based audio steganography with enhanced security. Telecommunication Systems, 52(4), 2197–220.
Chan, C. K., & Cheng, L. M. (2004). Hiding data in images by simple LSB substitution. Pattern Recognition, 37(3), 469–474.
Chang, K. C., Chang, C. P., Huang, P. S., & Tu, T. M. (2008). A novel image steganographic method using tri-way pixel-value differencing. Journal of Multimedia, 3(2), 37–44.
Chao, R. M., Wu, H. C., Lee, C. C., & Chu, Y. P. (2009). A novel image data hiding scheme with diamond encoding. EURASIP Journal on Information Security, 2009(1), 658047.
Cheddad, A., Condell, J., Curran, K., & Mc Kevitt, P. (2010). Digital image steganography: Survey and analysis of current methods. Signal Processing, 90(3), 727–752.
Chen, J. (2014). A PVD-based data hiding method with histogram preserving using pixel pair matching. Signal Processing: Image Communication, 29(3), 375–384.
Cintra, R. J., Bayer, F. M., & Tablada, C. J. (2014). Low-complexity 8-point DCT approximations based on integer functions. Signal Processing, 99, 201–214.
El Rahman, S. A. (2018). A comparative analysis of image steganography based on DCT algorithm and steganography tool to hide nuclear reactors confidential information. Computers & Electrical Engineering, 70, 380–399.
Ghebleh, M., Kanso, A., & Noura, H. (2014). An image encryption scheme based on irregularly decimated chaotic maps. Signal Processing: Image Communication., 29(5), 618–627.
Hussain, M., Wahab, A. W. A., Ho, A. T., Javed, N., & Jung, K. H. (2017). A data hiding scheme using parity-bit pixel value differencing and improved rightmost digit replacement. Signal Processing: Image Communication, 50, 44–57.
Jafari, R., Ziou, D., & Rashidi, M. M. (2013). Increasing image compression rate using steganography. Expert Systems with Applications, 40(17), 6918–6927.
Khan, A., & Sarfaraz, A. (2018). Novel high-capacity robust and imperceptible image steganography scheme using multi-flipped permutations and frequency entropy matching method. Soft Computing, 23(17), 1–12.
Khan, M., Shah, T., & Batool, S. I. (2014). Texture analysis of chaotic coupled map lattices based image encryption algorithm. 3D Research, 5(3), 19.
Kim, C., Kim, J., & Kim, D. J. (2019). Effects of personal motivation and computing characteristics on ubiquitous mobile device usages. International Journal of Mobile Communications, 17(2), 127–156.
Koupaei, J. A., Hosseini, S. M. M., & Ghaini, F. M. (2016). A new optimization algorithm based on chaotic maps and golden section search method. Engineering Applications of Artificial Intelligence, 50, 201–214.
L’Ecuyer, P., & Simard, R. (2007). TestU01: AC library for empirical testing of random number generators. ACM Transactions on Mathematical Software (TOMS), 33(4), 1–40.
Li, C. H., Lu, Z. M., & Su, Y. X. (2011). Reversible data hiding for BTC-compressed images based on biplane flipping and histogram shifting of mean tables. Information Technology Journal, 10(7), 1421–1426.
Lin, C. C., & Shiu, P. F. (2010). High capacity data hiding scheme for DCT-based images. Journal of Information Hiding and Multimedia Signal Processing, 1(3), 220–240.
Lin, Y. K. (2014). A data hiding scheme based upon DCT coefficient modification. Computer Standards & Interfaces, 36(5), 855–862.
Luo, H., Yu, F. X., Chen, H., Huang, Z. L., Li, H., & Wang, P. H. (2011). Reversible data hiding based on block median preservation. Information Sciences, 181(2), 308–328.
Malik, A., Sikka, G., & Verma, H. K. (2018). An AMBTC compression based data hiding scheme using pixel value adjusting strategy. Multidimensional Systems and Signal Processing, 29(4), 1801–1818.
Ma, Y., Luo, X., Li, X., Bao, Z., & Zhang, Y. (2018). Selection of rich model steganalysis features based on decision rough set \(\alpha \)-positive region reduction. IEEE Transactions on Circuits and Systems for Video Technology, 29(2), 336–350.
Maniriho, P., & Ahmad, T. (2018). Information hiding scheme for digital images using difference expansion and modulus function. Journal of King Saud University-Computer and Information Sciences, 31(3), 335–337.
Mao, Q., Li, F., & Chang, C. C. (2015). Reversible data hiding with oriented and minimized distortions using cascading trellis coding. Information Sciences, 317, 170–180.
Marsaglia, G. (1996). DIEHARD: A battery of tests of randomness. Retrieved February 11, 2020 from http://www.fsu.edu/pub/diehard.
Mielikainen, J. (2006). LSB matching revisited. IEEE Signal Processing Letters, 13(5), 285–287.
Miri, A., & Faez, K. (2018). An image steganography method based on integer wavelet transforms. Multimedia Tools and Applications, 77(11), 13133–13144.
Mishra, M., Kumar, S., & Mishra, S., (2012). Security enhanced digital image steganography based on successive Arnold transformation. In Advances in computer science, engineering & applications (pp. 221–229).
Pan, J. S., Li, W., Yang, C. S., & Yan, L. J. (2015). Image steganography based on subsampling and compressive sensing. Multimedia Tools and Applications, 74(21), 9191–9205.
Qiao, T., Luo, X., Wu, T., Xu, M., & Qian, Z. (2019). Adaptive steganalysis based on statistical model of quantized DCT coefficients for JPEG images. IEEE Transactions on Dependable and Secure Computing. https://doi.org/10.1109/TDSC.2019.2962672.
Qin, C., Chang, C. C., & Lin, C. C. (2015). An adaptive reversible steganographic scheme based on the just noticeable distortion. Multimedia Tools and Applications, 74(6), 1983–1995.
Rajaraman, V. (2016). IEEE standard for floating point numbers. Resonance, 21(1), 11–30.
Rukhin, A., Soto, J., Nechvatal, J., Smid, M., & Barker, E. (2001). A statistical test suite for random and pseudorandom number generators for cryptographic applications (p. 131). Gaithersburg: National Institute of Standards and Technology.
Saidi, M., Hermassi, H., Rhouma, R., & Belghith, S. (2017). A new adaptive image steganography scheme based on DCT and chaotic map. Multimedia Tools and Applications, 76(11), 13493–13510.
Subhedar, M. S., & Mankar, V. H. (2016). Image steganography using redundant discrete wavelet transform and QR factorization. Computers & Electrical Engineering, 54, 406–422.
Sun, W., Lu, Z. M., Wen, Y. C., Yu, F. X., & Shen, R. J. (2013). High performance reversible data hiding for block truncation coding compressed images. Signal, Image and Video Processing, 7(2), 297–306.
Swain, G. (2019). Two new steganography techniques based on quotient value differencing with addition-subtraction logic and PVD with modulus function. Optik, 180, 807–823.
Tang, M., Hu, J., Song, W., & Zeng, S. (2015). Reversible and adaptive image steganographic method. AEU-International Journal of Electronics and Communications, 69(12), 1745–1754.
Tseng, H. W., & Leng, H. S. (2013). A steganographic method based on pixel-value differencing and the perfect square number. Journal of Applied Mathematics, 2013, 1–8.
Valandar, M. Y., Ayubi, P., & Barani, M. J. (2017). A new transform domain steganography based on modified logistic chaotic map for color images. Journal of Information Security and Applications, 34, 142–151.
Valandar, M. Y., Barani, M. J., Ayubi, P., & Aghazadeh, M. (2018). An integer wavelet transforms image steganography method based on 3D sine chaotic map. Multimedia Tools and Applications, 78(8), 1–19.
Walker, J. (2008). Ent-a pseudorandom sequence test program. Retrieved February 14, 2020 from http://www.fourmilab.ch/random/.
Wang, C. C., Chang, Y. F., Chang, C. C., Jan, J. K., & Lin, C. C. (2014). A high capacity data hiding scheme for binary images based on block patterns. Journal of Systems and Software, 93, 152–162.
Wang, K., Lu, Z. M., & Hu, Y. J. (2013). A high capacity lossless data hiding scheme for JPEG images. Journal of Systems and Software, 86(7), 1965–1975.
Wang, X. T., Chang, C. C., Nguyen, T. S., & Li, M. C. (2013). Reversible data hiding for high quality images exploiting interpolation and direction order mechanism. Digital Signal Processing, 23(2), 569–577.
Wang, Z., & Bovik, A. C. (2002). A universal image quality index. IEEE Signal Processing Letters, 9(3), 81–84.
Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.
Wu, N. I., Wu, K. C., & Wang, C. M. (2012). Exploring pixel-value differencing and base decomposition for low distortion data embedding. Applied Soft Computing, 12(2), 942–960.
Yao, Y., Zhang, W., Yu, N., & Zhao, X. (2015). Defining embedding distortion for motion vector-based video steganography. Multimedia Tools and Applications, 74(24), 11163–11186.
Zhang, Y., Luo, X., Guo, Y., Qin, C., & Liu, F. (2019). Multiple robustness enhancements for image adaptive steganography in lossy channels. IEEE Transactions on Circuits and Systems for Video Technology. https://doi.org/10.1109/TCSVT.2019.2923980.
Zhang, Y., Luo, X., Yang, C., & Liu, F. (2017). Joint JPEG compression and detection resistant performance enhancement for adaptive steganography using feature regions selection. Multimedia Tools and Applications, 76(3), 3649–3668.
Zhang, Y., Luo, X., Yang, C., Ye, D., & Liu, F. (2016). A framework of adaptive steganography resisting JPEG compression and detection. Security and Communication Networks, 9(15), 2957–2971.
Zhang, Y., Qin, C., Zhang, W., Liu, F., & Luo, X. (2018). On the fault-tolerant performance for a class of robust image steganography. Signal Processing, 146, 99–111.
Zhang, X., & Wang, S. (2006). Efficient steganographic embedding by exploiting modification direction. IEEE Communications Letters, 10(11), 781–783.
Zhang, Y., Zhu, X., Qin, C., Yang, C., & Luo, X. (2018). Dither modulation based adaptive steganography resisting JPEG compression and statistic detection. Multimedia Tools and Applications, 77(14), 17913–17935.
Zhao, Z., Guan, Q., Zhang, H., & Zhao, X. (2018). Improving the robustness of adaptive steganographic algorithms based on transport channel matching. IEEE Transactions on Information Forensics and Security, 14(7), 1843–1856.
Acknowledgements
RK would like to thank Harkirat Singh for useful discussions and inputs in reviewing manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kaur, R., Singh, B. A hybrid algorithm for robust image steganography. Multidim Syst Sign Process 32, 1–23 (2021). https://doi.org/10.1007/s11045-020-00725-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11045-020-00725-0