iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s11045-020-00725-0
A hybrid algorithm for robust image steganography | Multidimensional Systems and Signal Processing Skip to main content
Log in

A hybrid algorithm for robust image steganography

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In this work, a novel hybrid algorithm has been developed for achieving imperceptible and robust image steganography for secure data communication. The novelty of the work lies in the careful manipulation of higher frequency coefficient of Discrete Cosine Transform (DCT) to maintain the perceptual quality of the image followed by embedding secret bits in the controlled DCT coefficients using random locations identified by deterministic Coupled Chaotic Map (CCM). The randomness of the CCM map is confirmed by National Institute of Standards and Technology, DIEHARD, ENT and TestU01 test suites. The experimental results demonstrate that the proposed technique has excellent stego-image quality keeping zero Bit Error Rate at maximum embedding capacity (EC). The proposed method has capability to withstand against malicious users as well as outperforms existing steganography techniques in terms of EC, and Peak Signal to Noise Ratio. The security of the proposed technique is subsequently examined by the key length, key sensitivity parameter and histogram analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Anees, A., Siddiqui, A. M., Ahmed, J., & Hussain, I. (2014). A technique for digital steganography using chaotic maps. Nonlinear Dynamics, 75(4), 807–816.

    Google Scholar 

  • Bhowal, K., Bhattacharyya, D., Pal, A. J., & Kim, T. H. (2013). A GA based audio steganography with enhanced security. Telecommunication Systems, 52(4), 2197–220.

    Google Scholar 

  • Chan, C. K., & Cheng, L. M. (2004). Hiding data in images by simple LSB substitution. Pattern Recognition, 37(3), 469–474.

    MATH  Google Scholar 

  • Chang, K. C., Chang, C. P., Huang, P. S., & Tu, T. M. (2008). A novel image steganographic method using tri-way pixel-value differencing. Journal of Multimedia, 3(2), 37–44.

    Google Scholar 

  • Chao, R. M., Wu, H. C., Lee, C. C., & Chu, Y. P. (2009). A novel image data hiding scheme with diamond encoding. EURASIP Journal on Information Security, 2009(1), 658047.

    Google Scholar 

  • Cheddad, A., Condell, J., Curran, K., & Mc Kevitt, P. (2010). Digital image steganography: Survey and analysis of current methods. Signal Processing, 90(3), 727–752.

    MATH  Google Scholar 

  • Chen, J. (2014). A PVD-based data hiding method with histogram preserving using pixel pair matching. Signal Processing: Image Communication, 29(3), 375–384.

    Google Scholar 

  • Cintra, R. J., Bayer, F. M., & Tablada, C. J. (2014). Low-complexity 8-point DCT approximations based on integer functions. Signal Processing, 99, 201–214.

    Google Scholar 

  • El Rahman, S. A. (2018). A comparative analysis of image steganography based on DCT algorithm and steganography tool to hide nuclear reactors confidential information. Computers & Electrical Engineering, 70, 380–399.

    MathSciNet  Google Scholar 

  • Ghebleh, M., Kanso, A., & Noura, H. (2014). An image encryption scheme based on irregularly decimated chaotic maps. Signal Processing: Image Communication., 29(5), 618–627.

    Google Scholar 

  • Hussain, M., Wahab, A. W. A., Ho, A. T., Javed, N., & Jung, K. H. (2017). A data hiding scheme using parity-bit pixel value differencing and improved rightmost digit replacement. Signal Processing: Image Communication, 50, 44–57.

    Google Scholar 

  • Jafari, R., Ziou, D., & Rashidi, M. M. (2013). Increasing image compression rate using steganography. Expert Systems with Applications, 40(17), 6918–6927.

    Google Scholar 

  • Khan, A., & Sarfaraz, A. (2018). Novel high-capacity robust and imperceptible image steganography scheme using multi-flipped permutations and frequency entropy matching method. Soft Computing, 23(17), 1–12.

    Google Scholar 

  • Khan, M., Shah, T., & Batool, S. I. (2014). Texture analysis of chaotic coupled map lattices based image encryption algorithm. 3D Research, 5(3), 19.

    Google Scholar 

  • Kim, C., Kim, J., & Kim, D. J. (2019). Effects of personal motivation and computing characteristics on ubiquitous mobile device usages. International Journal of Mobile Communications, 17(2), 127–156.

    Google Scholar 

  • Koupaei, J. A., Hosseini, S. M. M., & Ghaini, F. M. (2016). A new optimization algorithm based on chaotic maps and golden section search method. Engineering Applications of Artificial Intelligence, 50, 201–214.

    Google Scholar 

  • L’Ecuyer, P., & Simard, R. (2007). TestU01: AC library for empirical testing of random number generators. ACM Transactions on Mathematical Software (TOMS), 33(4), 1–40.

    MATH  Google Scholar 

  • Li, C. H., Lu, Z. M., & Su, Y. X. (2011). Reversible data hiding for BTC-compressed images based on biplane flipping and histogram shifting of mean tables. Information Technology Journal, 10(7), 1421–1426.

    Google Scholar 

  • Lin, C. C., & Shiu, P. F. (2010). High capacity data hiding scheme for DCT-based images. Journal of Information Hiding and Multimedia Signal Processing, 1(3), 220–240.

    Google Scholar 

  • Lin, Y. K. (2014). A data hiding scheme based upon DCT coefficient modification. Computer Standards & Interfaces, 36(5), 855–862.

    Google Scholar 

  • Luo, H., Yu, F. X., Chen, H., Huang, Z. L., Li, H., & Wang, P. H. (2011). Reversible data hiding based on block median preservation. Information Sciences, 181(2), 308–328.

    Google Scholar 

  • Malik, A., Sikka, G., & Verma, H. K. (2018). An AMBTC compression based data hiding scheme using pixel value adjusting strategy. Multidimensional Systems and Signal Processing, 29(4), 1801–1818.

    MATH  Google Scholar 

  • Ma, Y., Luo, X., Li, X., Bao, Z., & Zhang, Y. (2018). Selection of rich model steganalysis features based on decision rough set \(\alpha \)-positive region reduction. IEEE Transactions on Circuits and Systems for Video Technology, 29(2), 336–350.

    Google Scholar 

  • Maniriho, P., & Ahmad, T. (2018). Information hiding scheme for digital images using difference expansion and modulus function. Journal of King Saud University-Computer and Information Sciences, 31(3), 335–337.

    Google Scholar 

  • Mao, Q., Li, F., & Chang, C. C. (2015). Reversible data hiding with oriented and minimized distortions using cascading trellis coding. Information Sciences, 317, 170–180.

    Google Scholar 

  • Marsaglia, G. (1996). DIEHARD: A battery of tests of randomness. Retrieved February 11, 2020 from http://www.fsu.edu/pub/diehard.

  • Mielikainen, J. (2006). LSB matching revisited. IEEE Signal Processing Letters, 13(5), 285–287.

    Google Scholar 

  • Miri, A., & Faez, K. (2018). An image steganography method based on integer wavelet transforms. Multimedia Tools and Applications, 77(11), 13133–13144.

    Google Scholar 

  • Mishra, M., Kumar, S., & Mishra, S., (2012). Security enhanced digital image steganography based on successive Arnold transformation. In Advances in computer science, engineering & applications (pp. 221–229).

  • Pan, J. S., Li, W., Yang, C. S., & Yan, L. J. (2015). Image steganography based on subsampling and compressive sensing. Multimedia Tools and Applications, 74(21), 9191–9205.

    Google Scholar 

  • Qiao, T., Luo, X., Wu, T., Xu, M., & Qian, Z. (2019). Adaptive steganalysis based on statistical model of quantized DCT coefficients for JPEG images. IEEE Transactions on Dependable and Secure Computing. https://doi.org/10.1109/TDSC.2019.2962672.

  • Qin, C., Chang, C. C., & Lin, C. C. (2015). An adaptive reversible steganographic scheme based on the just noticeable distortion. Multimedia Tools and Applications, 74(6), 1983–1995.

    Google Scholar 

  • Rajaraman, V. (2016). IEEE standard for floating point numbers. Resonance, 21(1), 11–30.

    Google Scholar 

  • Rukhin, A., Soto, J., Nechvatal, J., Smid, M., & Barker, E. (2001). A statistical test suite for random and pseudorandom number generators for cryptographic applications (p. 131). Gaithersburg: National Institute of Standards and Technology.

    Google Scholar 

  • Saidi, M., Hermassi, H., Rhouma, R., & Belghith, S. (2017). A new adaptive image steganography scheme based on DCT and chaotic map. Multimedia Tools and Applications, 76(11), 13493–13510.

    Google Scholar 

  • Subhedar, M. S., & Mankar, V. H. (2016). Image steganography using redundant discrete wavelet transform and QR factorization. Computers & Electrical Engineering, 54, 406–422.

    Google Scholar 

  • Sun, W., Lu, Z. M., Wen, Y. C., Yu, F. X., & Shen, R. J. (2013). High performance reversible data hiding for block truncation coding compressed images. Signal, Image and Video Processing, 7(2), 297–306.

    Google Scholar 

  • Swain, G. (2019). Two new steganography techniques based on quotient value differencing with addition-subtraction logic and PVD with modulus function. Optik, 180, 807–823.

    Google Scholar 

  • Tang, M., Hu, J., Song, W., & Zeng, S. (2015). Reversible and adaptive image steganographic method. AEU-International Journal of Electronics and Communications, 69(12), 1745–1754.

    Google Scholar 

  • Tseng, H. W., & Leng, H. S. (2013). A steganographic method based on pixel-value differencing and the perfect square number. Journal of Applied Mathematics, 2013, 1–8.

    MathSciNet  MATH  Google Scholar 

  • Valandar, M. Y., Ayubi, P., & Barani, M. J. (2017). A new transform domain steganography based on modified logistic chaotic map for color images. Journal of Information Security and Applications, 34, 142–151.

    Google Scholar 

  • Valandar, M. Y., Barani, M. J., Ayubi, P., & Aghazadeh, M. (2018). An integer wavelet transforms image steganography method based on 3D sine chaotic map. Multimedia Tools and Applications, 78(8), 1–19.

    Google Scholar 

  • Walker, J. (2008). Ent-a pseudorandom sequence test program. Retrieved February 14, 2020 from http://www.fourmilab.ch/random/.

  • Wang, C. C., Chang, Y. F., Chang, C. C., Jan, J. K., & Lin, C. C. (2014). A high capacity data hiding scheme for binary images based on block patterns. Journal of Systems and Software, 93, 152–162.

    Google Scholar 

  • Wang, K., Lu, Z. M., & Hu, Y. J. (2013). A high capacity lossless data hiding scheme for JPEG images. Journal of Systems and Software, 86(7), 1965–1975.

    Google Scholar 

  • Wang, X. T., Chang, C. C., Nguyen, T. S., & Li, M. C. (2013). Reversible data hiding for high quality images exploiting interpolation and direction order mechanism. Digital Signal Processing, 23(2), 569–577.

    MathSciNet  Google Scholar 

  • Wang, Z., & Bovik, A. C. (2002). A universal image quality index. IEEE Signal Processing Letters, 9(3), 81–84.

    Google Scholar 

  • Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.

    Google Scholar 

  • Wu, N. I., Wu, K. C., & Wang, C. M. (2012). Exploring pixel-value differencing and base decomposition for low distortion data embedding. Applied Soft Computing, 12(2), 942–960.

    Google Scholar 

  • Yao, Y., Zhang, W., Yu, N., & Zhao, X. (2015). Defining embedding distortion for motion vector-based video steganography. Multimedia Tools and Applications, 74(24), 11163–11186.

    Google Scholar 

  • Zhang, Y., Luo, X., Guo, Y., Qin, C., & Liu, F. (2019). Multiple robustness enhancements for image adaptive steganography in lossy channels. IEEE Transactions on Circuits and Systems for Video Technology. https://doi.org/10.1109/TCSVT.2019.2923980.

  • Zhang, Y., Luo, X., Yang, C., & Liu, F. (2017). Joint JPEG compression and detection resistant performance enhancement for adaptive steganography using feature regions selection. Multimedia Tools and Applications, 76(3), 3649–3668.

    Google Scholar 

  • Zhang, Y., Luo, X., Yang, C., Ye, D., & Liu, F. (2016). A framework of adaptive steganography resisting JPEG compression and detection. Security and Communication Networks, 9(15), 2957–2971.

    Google Scholar 

  • Zhang, Y., Qin, C., Zhang, W., Liu, F., & Luo, X. (2018). On the fault-tolerant performance for a class of robust image steganography. Signal Processing, 146, 99–111.

    Google Scholar 

  • Zhang, X., & Wang, S. (2006). Efficient steganographic embedding by exploiting modification direction. IEEE Communications Letters, 10(11), 781–783.

    MathSciNet  Google Scholar 

  • Zhang, Y., Zhu, X., Qin, C., Yang, C., & Luo, X. (2018). Dither modulation based adaptive steganography resisting JPEG compression and statistic detection. Multimedia Tools and Applications, 77(14), 17913–17935.

    Google Scholar 

  • Zhao, Z., Guan, Q., Zhang, H., & Zhao, X. (2018). Improving the robustness of adaptive steganographic algorithms based on transport channel matching. IEEE Transactions on Information Forensics and Security, 14(7), 1843–1856.

    Google Scholar 

Download references

Acknowledgements

RK would like to thank Harkirat Singh for useful discussions and inputs in reviewing manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajwinder Kaur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, R., Singh, B. A hybrid algorithm for robust image steganography. Multidim Syst Sign Process 32, 1–23 (2021). https://doi.org/10.1007/s11045-020-00725-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-020-00725-0

Keywords

Navigation