Abstract
Convolutional neural networks (CNNs) have demonstrated promising accuracy in segmenting concrete cracks under controlled conditions. However, these existing methods usually are challenging in addressing multi-scale patterns or complex scenarios. To address this pervasive issue, a modified U-Net network was established in the current study. The proposed model, namely U-Net-ASPP-CBAM, integrates the convolutional block attention module after a convolution operator to selectively focus on the crack information while disregarding irrelevant background details during feature extraction. Furthermore, U-Net-ASPP-CBAM network replaces a pooling layer using the atrous spatial pyramid pooling module to explore and fuse features across multiple scales, enhancing information capture for the segmentation of small objects. The performance of the proposed model has been validated by a self-built dataset comprising crack images with diverse complex backgrounds. And the segmentation effectiveness is assessed through evaluation indices, including precision, recall, F1 score, pixel accuracy, and mean intersection over union. The results show the proposed U-Net-ASPP-CBAM model outperforms other segmentation models.
Similar content being viewed by others
Data availability
Data will be made available on request.
References
Shamsabadi EA, Xu C, Rao AS, Nguyen T, Ngo T, Dias-da-Costa D (2022) Vision transformer-based autonomous crack detection on asphalt and concrete surfaces. Auto Constr 140:104316. https://doi.org/10.1016/j.autcon.2022.104316
Yamaguchi T, Hashimoto S (2009) Fast crack detection method for large-size concrete surface images using percolation-based image processing. Inter Mach Visi Appli 21(5):797–809. https://doi.org/10.1007/s00138-009-0189-8
Nhat-Duc H, Nguyen Q-L, Tran V-D (2018) Automatic recognition of asphalt pavement cracks using metaheuristic optimized edge detection algorithms and convolution neural network. Auto Constr 94:203–213. https://doi.org/10.1016/j.autcon.2018.07.008
Arena A, Delle Piane C, Sarout J (2014) A new computational approach to cracks quantification from 2D image analysis: Application to micro-cracks description in rocks. Comp Geos 66:106–120. https://doi.org/10.1016/j.cageo.2014.01.007
Dorafshan S, Thomas RJ, Maguire M (2018) Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete. Constr Build Mater 186:1031–1045. https://doi.org/10.1016/j.conbuildmat.2018.08.011
Abdel-Qader I, Abudayyeh O, Kelly ME (2003) Analysis of Edge-Detection Techniques for Crack Identification in Bridges. J Compu Civ Eng 17(4):255–263. https://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(255)
Hutchinson TC, Chen Z (2006) Improved Image Analysis for Evaluating Concrete Damage. J Compu Civ Eng 20:210–216. https://doi.org/10.1061/(ASCE)0887-3801(2006)20:3(210)
Zhao, H, Qin, G, Wang X (2010) Improvement of canny algorithm based on pavement edge detection. 2010 3rd International Congress on Image and Signal Processing. IEEE. https://doi.org/10.1109/CISP.2010.5646923
Liu Y, Cho S, Jr B F S et al (2014) Automated assessment of cracks on concrete surfaces using adaptive digital image processing[J]. Smart Struct Syst 14(4):719–741. https://doi.org/10.12989/sss.2014.14.4.719
Liu Y-F, Cho S, Spencer BF, Fan J-S (2016) Concrete Crack Assessment Using Digital Image Processing and 3D Scene Reconstruction. J Compu Civ Eng 30(1):1–19. https://doi.org/10.1061/(asce)cp.1943-5487.0000446
Tanaka N, Uematsu K (1998) A crack detection method in road surface images using morphology[J]. IAPR MVA, Tokyo, 154–157. https://doi.org/10.2208/jsceje.62.631
Sinha SK, Fieguth PW (2006) Segmentation of buried concrete pipe images. Auto Constr 15(1):47–57. https://doi.org/10.1016/j.autcon.2005.02.007
Giakoumis I, Nikolaidis N, Pitas I (2006) Digital image processing techniques for the detection and removal of cracks in digitized paintings. IEEE Trans Image Process 15(1):178–188. https://doi.org/10.1109/tip.2005.860311
Aboutabit N (2020) Reduced Featured Based Projective Integral for Road Cracks Detection and Classification. Pattern Recognit Image Anal 30(2):247–255. https://doi.org/10.1134/s1054661820020029
Mei Q, Gül M (2020) Multi-level feature fusion in densely connected deep-learning architecture and depth-first search for crack segmentation on images collected with smartphones. Struct Health Monit 19(6):1726–1744. https://doi.org/10.1177/1475921719896813
Andrushia ADNA, Lubloy E (2021) Deep learning based thermal crack detection on structural concrete exposed to elevated temperature. Adv Struct Eng 24(9):1896–1909. https://doi.org/10.1177/1369433220986637
Hsieh Y-A, Tsai YJ (2020) Machine learning for crack detection: review and model performance comparison. J Comput Civ Eng 34:04020038. https://doi.org/10.1061/(ASCE)
Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional neural networks[J]. Adv Neural Inf Process Syst 25(2). https://doi.org/10.1145/3065386
Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition[J]. Comput Sci. https://doi.org/10.48550/arXiv.1409.1556
Szegedy C, Liu W, Jia Y et al (2015) Going deeper with convolutions[J]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/CVPR.2015.7298594
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/CVPR.2016.90
Cha Y-J, Choi W, Büyüköztürk O (2017) Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks. Comput-Aided Civ Infrastruct Eng 32(5):361–378. https://doi.org/10.1111/mice.12263
Ni F, Zhang J, Chen Z (2018) Zernike-moment measurement of thin-crack width in images enabled by dual-scale deep learning. Comput-Aided Civ Infrastruct Eng 34(5):367–384. https://doi.org/10.1111/mice.12421
Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031
Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/CVPR.2016.91
Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, Berg AC (2016) SSD: single shot multibox detector. Computer Vision – ECCV 2016. https://doi.org/10.1007/978-3-319-46448-0_2
Tabata AN, Zimmer A, dos Santos Coelho L, Mariani VC (2023) Analyzing CARLA ’s performance for 2D object detection and monocular depth estimation based on deep learning approaches. Expert Syst Appl 227:120. https://doi.org/10.1016/j.eswa.2023.120200
Ouali I, Ben Halima M, Wali A (2022) Real-time application for recognition and visualization of arabic words with vowels based DL and AR. 2022 International Wireless Communications and Mobile Computing (IWCMC), pp 678–683. https://doi.org/10.1109/IWCMC55113.2022.9825089
Che L, He Z, Zheng K, Si T, Ge M, Cheng H, Zeng L (2023) Deep learning in alloy material microstructures: Application and prospects. Mater Today Commun 37:107531. https://doi.org/10.1016/j.mtcomm.2023.107531
Yang X, Li H, Yu Y, Luo X, Huang T, Yang X (2018) Automatic Pixel-Level Crack Detection and Measurement Using Fully Convolutional Network. Comput-Aided Civ Infrastruct Eng 33(12):1090–1109. https://doi.org/10.1111/mice.12412
Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp 234–241. https://doi.org/10.1007/978-3-319-24574-4_28
Badrinarayanan V, Kendall A, Cipolla R (2017) SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615
Chen L-C, Zhu Y, Papandreou G, Schro F, Adam H (2018) Encoder-decoder with atrous separable convolution for semantic image segmentation. Computer Vision – ECCV 2018, pp 833–851. https://doi.org/10.1007/978-3-030-01234-2_49
Fu J, Liu J, Jiang J, Li Y, Bao Y, Lu H (2021) Scene Segmentation With Dual Relation-Aware Attention Network. IEEE Trans Neural Netw Learn Syst 32(6):2547–2560. https://doi.org/10.1109/TNNLS.2020.3006524
Cui X, Wang Q, Dai J, Li S, Xie C, Wang J (2022) Pixel-level intelligent recognition of concrete cracks based on DRACNN. Mater Lett 306:130867. https://doi.org/10.1016/j.matlet.2021.130867
Zhang T, Wang D, Mullins A, Lu Y (2023) Integrated APC-GAN and AttuNet Framework for Automated Pavement Crack Pixel-Level Segmentation: A New Solution to Small Training Datasets. IEEE trans Intell Transp Syst 24(4):4474–4481. https://doi.org/10.1109/tits.2023.3236247
Hong Z, Yang F, Pan H, Zhou R, Zhang Y, Han Y, Wang J, Yang S, Chen P, Tong X, Liu J (2022) Highway Crack Segmentation From Unmanned Aerial Vehicle Images Using Deep Learning. IEEE Geosci Remote Sens Lett 19:1–5. https://doi.org/10.1109/lgrs.2021.3129607
Su H, Wang X, Han T, Wang Z, Zhao Z, Zhang P (2022) Research on a U-Net Bridge Crack Identification and Feature-Calculation Methods Based on a CBAM Attention Mechanism. Build 12(10):1561. https://doi.org/10.3390/buildings12101561
Ren Y, Huang J, Hong Z, Lu W, Yin J, Zou L, Shen X (2020) Image-based concrete crack detection in tunnels using deep fully convolutional networks. Constr Build Mater 234:117367. https://doi.org/10.1016/j.conbuildmat.2019.117367
Qiao W, Zhang H, Zhu F, Wu Q, Lonetti P (2021) A Crack Identification Method for Concrete Structures Using Improved U-Net Convolutional Neural Networks. Math Probl Eng 2021:1–16. https://doi.org/10.1155/2021/6654996
Wang A, Togo R, Ogawa T, Haseyama M (2022) Defect Detection of Subway Tunnels Using Advanced U-Net Network. Sensors (Basel) 22(6):2330. https://doi.org/10.3390/s22062330
Cheng H, Li Y, Li H, Hu Q (2023) Embankment crack detection in UAV images based on efficient channel attention U2Net. Structures 50:430–443. https://doi.org/10.1016/j.istruc.2023.02.010
Shang J, Xu J, Zhang AA, Liu Y, Wang KCP, Ren D, Zhang H, Dong Z, He A (2023) Automatic Pixel-level pavement sealed crack detection using Multi-fusion U-Net network. Measurement 208:112475
Zhong T, Wang W, Lu S, Dong X, Yang B (2023) RMCHN: A Residual Modular Cascaded Heterogeneous Network for Noise Suppression in DAS-VSP Records. IEEE Geosci Remote Sens Lett 20:1–5. https://doi.org/10.1109/lgrs.2022.3229556
Woo S, Park J, Lee J-Y, Kweon IS (2018) CBAM: Convolutional Block Attention Module. Proceedings of the European conference on computer vision. Computer Vision – ECCV 2018, pp 3–19. https://doi.org/10.1007/978-3-030-01234-2_1
Choi W, Cha Y-J (2020) SDDNet: Real-Time Crack Segmentation. IEEE Trans Ind Electron 67(9):8016–8025. https://doi.org/10.1109/tie.2019.2945265
Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2018) DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848. https://doi.org/10.1109/TPAMI.2017.2699184
Li P, Xia H, Zhou B, Yan F, Guo R (2022) A Method to Improve the Accuracy of Pavement Crack Identification by Combining a Semantic Segmentation and Edge Detection Model. Appl Sci 12(9):4714. https://doi.org/10.3390/app12094714
Acknowledgements
The authors gratefully appreciate the financial support of the Nanjing International joint research and development project of China (2022SX00001057) and the National Natural Science Foundation of China (52078122) are greatly appreciated.
Author information
Authors and Affiliations
Contributions
Feng Qu: Writing-original draft, Investigation, Formal analysis. Bokun Wang: Investigation. Qing Zhu: Investigation. Fu Xu: Supervision, Conceptualization. Yaojing Chen: Supervision, Conceptualization. Caiqian Yang: Conceptualization, Supervision, Writing-review & editing.
Corresponding author
Ethics declarations
Competing interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in the manuscript.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Qu, F., Wang, B., Zhu, Q. et al. Toward enhancing concrete crack segmentation accuracy under complex scenarios: a novel modified U-Net network. Multimed Tools Appl 83, 76935–76952 (2024). https://doi.org/10.1007/s11042-024-18568-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-024-18568-3