iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s11042-017-4978-1
Robust copy-move forgery detection based on multi-granularity Superpixels matching | Multimedia Tools and Applications Skip to main content
Log in

Robust copy-move forgery detection based on multi-granularity Superpixels matching

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a new multi-granularity superpixels matching based algorithm for the accurate detection and localization of copy-move forgeries, which integrated the advantages of keypoint-based and block-based forgery detection approaches. Firstly, we divide the original tempted image into non-overlapping and irregular coarse-granularity superpixels, and the stable image keypoints are extracted from each coarse-granularity superpixel. Secondly, the superpixel features, which is quaternion exponent moments magnitudes, are extracted from each coarse-granularity superpixel, and we find the matching coarse-granularity superpixels (suspected forgery region pairs) rapidly using the Exact Euclidean Locality Sensitive Hashing (E2LSH). Thirdly, the suspected forgery region pairs are further segmented into fine-granularity superpixels, and the matching keypoints within the suspected forgery region pairs are replaced with the fine-granularity superpixels. Finally, the neighboring fine-granularity superpixels are merged, and we obtain the detected forgery regions through morphological operation. Compared with the state-of-the-art approaches, extensive experimental results, conducted on the public databases available online, demonstrate the good performance of our proposed algorithm even under a variety of challenging conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Amerini I, Ballan L, Caldelli R et al (2013) Copy-move forgery detection and localization by means of robust clustering with J-linkage. Signal Process Image Commun 28(6):659–669

    Article  Google Scholar 

  2. Ardizzone E, Bruno A, Mazzola G (2015) Copy-move forgery detection by matching triangles of keypoints. IEEE Trans Inf Forensics Secur 10(10):2084–2094

    Article  Google Scholar 

  3. Bi X, Pun CM, Yuan XC (2016) Multi-level dense descriptor and hierarchical feature matching for copy-move forgery detection. Inf Sci 345:226–242

    Article  Google Scholar 

  4. Chen L, Lu W, Ni J et al (2013) Region duplication detection based on Harris corner points and step sector statistics. J Vis Commun Image Represent 24(3):244–254

    Article  Google Scholar 

  5. Chen B, Yang J, Jeon B, Zhang X (2017) Kernel quaternion principal component analysis and its application in RGB-D object recognition. Neurocomputing. doi:10.1016/j.neucom.2017.05.047

  6. Christlein V, Riess C, Jordan J et al (2012) An evaluation of popular copy-move forgery detection approaches. IEEE Trans Inf Forensics Secur 7(6):1841–1854

    Article  Google Scholar 

  7. Costanzo A, Amerini I, Caldelli R et al (2014) Forensic analysis of SIFT keypoint removal and injection. IEEE Trans Inf Forensics Secur 9(9):1450–1464

    Article  Google Scholar 

  8. Cozzolino D, Poggi G, Verdoliva L (2014) Copy-move forgery detection based on patchmatch. 2014 I.E. International Conference on Image Processing (ICIP), Paris, France, 5312–5316

  9. Cozzolino D, Poggi G, Verdoliva L (2015) Efficient dense-field copy–move forgery detection. IEEE Trans Inf Forensics Secur 10(11):2284–2297

    Article  Google Scholar 

  10. Geusebroek JM, Van den Boomgaard R, Smeulders AWM et al (2001) Color invariance. IEEE Trans Pattern Anal Mach Intell 23(12):1338–1350

    Article  Google Scholar 

  11. Jiang YJ (2011) Exponent moments and its application in pattern recognition. Beijing University of Posts and Telecommunications, Beijing

    Google Scholar 

  12. Lee JC (2015) Copy-move image forgery detection based on Gabor magnitude. J Vis Commun Image Represent 31:320–334

    Article  Google Scholar 

  13. Lee JC, Chang CP, Chen WK (2015) Detection of copy–move image forgery using histogram of orientated gradients. Inf Sci 321:250–262

    Article  Google Scholar 

  14. Li J, Li X, Yang B et al (2015) Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inf Forensics Secur 10(3):507–518

    Article  Google Scholar 

  15. Li Y, Wang S, Tian Q et al (2015) A survey of recent advances in visual feature detection. Neurocomputing 149:736–751

    Article  Google Scholar 

  16. Lim WQ (2010) The discrete shearlet transform: a new directional transform and compactly supported shearlet frames. IEEE Trans Image Process 19(5):1166–1180

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu M, Tuzel O, Ramalingam S, Chellappa R (2011) Entropy rate superpixel segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern

  18. Mainali P, Lafruit G, Yang Q et al (2013) SIFER: scale-invariant feature detector with error resilience. Int J Comput Vis 104(2):172–197

    Article  MATH  Google Scholar 

  19. Pan X, Lyu S (2010) Region duplication detection using image feature matching. IEEE Trans Inf Forensics Secur 5(4):857–867

    Article  Google Scholar 

  20. Pandey R, Singh S, Shukla K (2016) Passive forensics in image and video using noise features: a review. Digit Investig 19:1–28

    Article  Google Scholar 

  21. Pun CM, Yuan XC, Bi XL (2015) Image forgery detection using adaptive oversegmentation and feature point matching. IEEE Trans Inf Forensics Secur 10(8):1705–1716

    Article  Google Scholar 

  22. Qureshi M, Deriche M (2015) A bibliography of pixel-based blind image forgery detection techniques. Signal Process Image Commun 39:46–74

    Article  Google Scholar 

  23. Ryu SJ, Kirchner M, Lee MJ et al (2013) Rotation invariant localization of duplicated image regions based on Zernike moments. IEEE Trans Inf Forensics Secur 8(8):1355–1370

    Article  Google Scholar 

  24. Silva E, Carvalho T, Ferreira A et al (2015) Going deeper into copy-move forgery detection: exploring image telltales via multi-scale analysis and voting processes. J Vis Commun Image Represent 29:16–32

    Article  Google Scholar 

  25. Wang X, Niu P, Yang H et al (2014) A new robust color image watermarking using local quaternion exponent moments. Inf Sci 277:731–754

    Article  Google Scholar 

  26. Wang J, Li T, Shi Y-Q, Lian S, Ye J (2016) Forensics feature analysis in quaternion wavelet domain for distinguishing photographic images and computer graphics. Multimed Tool Appl. doi:10.1007/s11042-016-4153-0

  27. Wu Q, Wang S, Zhang X (2011) Log-polar based scheme for revealing duplicated regions in digital images. IEEE Signal Process Lett 18(10):559–562

    Article  Google Scholar 

  28. Xia Z, Wang X, Zhang L, Qin Z, Sun X, Ren K (2016) A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing. IEEE Trans Inf Forensics Secur 11(11):2594–2608

    Article  Google Scholar 

  29. Xiang-yang W, Yu-nan L, Huan X, Pei W, Hong-ying Y Robust copy-move forgery detection using quaternion exponent moments. Pattern Anal Applic. doi:10.1007/s10044-016-0588-1

  30. Yu L, Han Q, Niu X (2016) Feature point-based copy-move forgery detection: covering the non-textured areas. Multimedia Tools Appl 75(2):1159–1176

    Article  Google Scholar 

  31. Zandi M, Mahmoudi-Aznaveh A, Talebpour A (2016) Iterative copy-move forgery detection based on a new interest point detector. IEEE Trans Inf Forensics Secur 11(11):2499–2512

    Article  Google Scholar 

  32. Zhang R, Wei F, Li B (2014) E2LSH based multiple kernel approach for object detection. Neurocomputing 124:105–110

    Article  Google Scholar 

  33. Zhili Z, Ching-Nung Y, Xingming S et al (2016) Effective and efficient image copy detection with resistance to arbitrary rotation. IEICE Trans Inf Syst 99(6):1531–1540

    Google Scholar 

  34. Zhou Z, Wang Y, Wu Q et al (2017) Effective and efficient global context verification for image copy detection. IEEE Trans Inf Forensics Secur 12(1):48–63

    Article  Google Scholar 

  35. Zong T, Xiang Y, Natgunanathan I et al (2015) Robust histogram shape-based method for image watermarking. IEEE Trans Circuits Syst Video Technol 25(5):717–729

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 61472171 & 61272416, the Natural Science Foundation of Liaoning Province of China under Grant No. 201602463, A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, and Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-ying Yang or Xiang-yang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Hy., Niu, Y., Jiao, Lx. et al. Robust copy-move forgery detection based on multi-granularity Superpixels matching. Multimed Tools Appl 77, 13615–13641 (2018). https://doi.org/10.1007/s11042-017-4978-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4978-1

Keywords

Navigation