iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s11042-008-0219-y
Designing and scaling distributed VoD servers | Multimedia Tools and Applications Skip to main content
Log in

Designing and scaling distributed VoD servers

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Planning Video-on-Demand (VoD) services based on the server architecture and the available equipment is always a challenging task. We created a formal model to support the design of distributed video servers that adapt dynamically and automatically to the changing client demands, network and host parameters. The model makes giving estimations about the available throughput possible, and defines evaluation criteria for VoD services relating to utilization and load balance, video usage, client satisfaction and costs. The dynamism of the frame model originates from the possible state transitions which have to be defined in a core model. The core model is responsible for configuration recommendation which determines how clients are served depending on the properties of their requests, system configuration and system load. Furthermore, it decides on the optimal placement of the server components in the network. The usability of the model is illustrated on examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Apple Computer, Inc. QuickTime Streaming Server (2002) Darwin Streaming server: mAdministrator’s Guide. http://developer.apple.com/darwin/projects/streaming/

  2. Boll S (2003) MM4U—a framework for creating personalized multimedia content. In: Proceedings of the 2003 International Workshop on Cryptology and Network Security, pp 12–26

  3. Böszörményi L, Hellwagner H, Kosch H, Libsie M, Podlipnig S (2003) Metadata driven adaptation in the ADMITS project. EURASIP Signal Process Image Commun J 18(8):749–766, Sept. 2003 (Special Issue on Multimedia Adaptation)

    Article  Google Scholar 

  4. Böszörmenyi L, Hellwagner H, Schojer P (2007) Metadata-driven optimal transcoding in a multimedia proxy. Multimedia Syst 12:51–68, March 2007

    Article  Google Scholar 

  5. Calvert K, Eagan J, Merugu S, Namjoshi A, Stasko J, Zegura E (2003) Extending and enhancing GT-ITM. In: Proceedings of the ACM SIGCOMM 2003 Workshops

  6. Cherkasova L (2005) Optimizing the reliable distribution of large files within CDNs. ISCC 2005. In: Proceedings on the 10th IEEE Symposium on Computers and Communications, vol, issue, 27–30 June 2005, pp 692–697

  7. Cherkasova L, Staley L (2002) Measuring the capacity of a streaming media server in a utility data center environment. In: Proceedings of ACM Multimedia 2002, Juan Les Pines, France

  8. Cherkasova L, Tang W, Singhal S (2004) An SLA-oriented capacity planning tool for streaming media services. In: Proceedings of the International Conference on Dependable Systems and Networks

  9. Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to algorithms, 2nd edn. MIT Press and McGraw-Hill, Cambridge, MA, pp 651–664 ISBN 0-262-03293-7. Section 26.2: The Ford–Fulkerson method

    MATH  Google Scholar 

  10. Cornuejols G, Fisher ML, Nemhauser GL (1977) Location of bank accounts to optimize float: an analytic study of exact and approximate algorithms. Manage Sci 23:789–810

    Article  MATH  MathSciNet  Google Scholar 

  11. David WB, Rowe LA (1996) Hierarchical storage management in a distributed VOD system. IEEE Multimed 3(3):37–47, doi:10.1109/93.556538

    Article  Google Scholar 

  12. Goldschmidt B, Szkaliczki T, Böszörményi L (2004) Placement of nodes in an adaptive distributed multimedia server. In: Proceedings of the 10th International Euro-Par Conference, pp 776–783, Extended version: Technical Reports of the Institute of Information Technology, University Klagenfurt, TR/ITEC/04/2.06

  13. Guo M, Ammar MH, Zegura EW (2002) Selecting among replicated batching video-on-demand servers. In: Proceedings of Network and Operating System Support for Digital Audio and Video, 12th International Workshop, NOSSDAV 2002, pp 155–163

  14. Helix Community The Helix Platform, 2002. https://www.helixcommunity.org/2002/intro/platform

  15. http://vodka.lfcia.org

  16. http://www.isi.edu/nsnam/ns/doc/node144.html

  17. Ji ZGP, Shenoy P (2002) A demand adaptive and locality aware streaming media server cluster architecture. Proceedings of ACM NOSSDAV 2002, May 2002, Miami, Florida, USA

  18. Karpati P (2008) Designing and scaling proactive, self-organizing video servers. A formal and a simulation model. Vdm Verlag Dr. Müller, April 2008

  19. Kárpáti P, Kocsor A, Böszörményi L (2005) Client behaviour prediction in a proactive video server. In: Proceedings of IASTED International Conference on Internet and Multimedia Systems and Applications, ACTA Press 462, pp 492–497

  20. Kárpáti P, Szkaliczki T, Böszörményi L (2005). Mathematical model for distributed video-on-demand servers. Technical Reports of the Institute of Information Technology, University Klagenfurt, TR/ITEC/05/2.13

  21. Kayssi A, El-Haj-Mahmoud A (2004) EmuNET: a real-time network emulator. In: Proceedings of the 19th ACM Symposium on Applied Computing (SAC'04), pp 357–362

  22. Khan S, Li KF, Manning EG, Akbar M (2002) Solving the knapsack problem for adaptive multimedia. Studia Inform 2(1):154–174, (special issue on Cutting, Packing and Knapsacking Problems)

    Google Scholar 

  23. Kropfberger M, Schojer P et al (2004) ViTooKi—the video toolkit. http://vitooki.sourceforge.net/

  24. Li B, Golin MJ, Italiano GF, Deng X, Sohraby K (1999) On the optimal placement of web proxies in the internet. IEEE INFOCOM 1999—The Conference on Computer Communications, No. 1, March 1999, pp 1282–1290

  25. Microsoft Corporation 2003, http://www.microsoft.com/windows/windowsmedia/9series/server.aspx

  26. Penas JJS, Ramiro CA (2003) Extending the VoDKA architecture to improve resource modeling, principles, logics, and implementations of high-level programming languages. 2nd ACM SIGPLAN Erlang Workshop. Uppsala, Sweden. August 29

  27. Public homepage for “Infrastructure for Adaptive Server Applications” project: http://elearning.ilab.sztaki.hu/iasa/index.html

  28. Qiu L, Padmanabhan VN, Voelker GM (2001) On the placement of web server replicas. n Proceedings of IEEE INFOCOM’01, Apr. 2001, pp 1587–1596

  29. RealNetworks, Inc. Helix Universal Server Administration Guide, 2003. URL: http://docs.real.com/docs/HelixServer9.pdf

  30. Sitaram D, Dan A (2000) Multimedia servers. Kaufmann, Los Altos, CA, pp 89–93

    Google Scholar 

  31. Steen M, Homburg P, Tannenbaum AS (1999) Globe: a wide-area distributed system. IEEE Concurr 7:70–78

    Article  Google Scholar 

  32. Steinmetz R (2000) Multimedia-technologie. Springer, Heidelberg, pp 238–239

    MATH  Google Scholar 

  33. Szkaliczki T, Böszörményi L (2004) Incremental placement of nodes in a large-scale adaptive distributed multimedia server. In: Zoltan J, Kacsuk P, Kranzlmüller D (eds) Proceedings of International Conference on Distributed and Parallel Systems (DAPSYS 04), Kluwer international series in engineering and computer science, vol 777. Springer, New York, pp 165–172

    Google Scholar 

  34. Tang W, Fu Y, Cherkasova L, Vahdat A (2003) MediSyn: a synthetic streaming media service workload generator. Proceedings of the 13th International Workshop Network Operating System Support for Digital Audio Video (ACM NOSSDAV), Monterey, CA, June 2003, pp 12–21

  35. Tusch R (2004) Design and implementation of an adaptive distributed multimedia streaming server. Ph.D. thesis, University Klagenfurt

  36. Tusch R, Böszörmenyi L, Goldschmidt B, Hellwagner H, Schojer P (2004) Offensive and defensive adaptation in distributed multimedia systems. Comput Sci Inf Syst 1(1):49–77, ComSIS

    Google Scholar 

  37. Yang M, Fei Z (2003) A model for replica placement in content distribution networks for multimedia applications. Communications 1:557–561 ICC apos;03. IEEE International Conference, 11–15 May 2003

    Google Scholar 

Download references

Acknowledgements

This work was carried out partially during the tenure of an ERCIM “Alain Bensoussan” Fellowship Programme. Partial support of the Hungarian National Science Fund (Grant No. OTKA 67651) and the Mobile Innovation Center, Hungary is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Szkaliczki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kárpáti, P., Szkaliczki, T. & Böszörményi, L. Designing and scaling distributed VoD servers. Multimed Tools Appl 41, 55–91 (2009). https://doi.org/10.1007/s11042-008-0219-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-008-0219-y

Keywords

Navigation