Abstract
Schizophrenia is a devastating neuropsychiatric disorder affecting 1% of the world population and ranks as one of the disorders providing the most severe burden for society. Schizophrenia etiology remains obscure involving multi-risk factors, such as genetic, environmental, nutritional, and developmental factors. Complex interactions of genetic and environmental factors have been implicated in the etiology of schizophrenia. This review provides an overview of the historical origins, pathophysiological mechanisms, diagnosis, clinical symptoms and corresponding treatment of schizophrenia. In addition, as schizophrenia is a polygenic, genetic disorder caused by the combined action of multiple micro-effective genes, we further detail several approaches, such as candidate gene association study (CGAS) and genome-wide association study (GWAS), which are commonly used in schizophrenia genomics studies. A number of GWASs about schizophrenia have been performed with the hope to identify novel, consistent and influential risk genetic factors. Finally, some schizophrenia susceptibility genes have been identified and reported in recent years and their biological functions are also listed. This review may serve as a summary of past research on schizophrenia genomics and susceptibility genes (NRG1, DISC1, RELN, BDNF, MSI2), which may point the way to future schizophrenia genetics research. In addition, depending on the above discovery of susceptibility genes and their exact function, the development and application of antipsychotic drugs will be promoted in the future.
Similar content being viewed by others
Data availability
Not applicable.
Code availability
Not applicable.
References
Abrous DN, Koehl M, Le Moal M (2005) Adult neurogenesis: from precursors to network and physiology. Physiol Rev 85(2):523–569. https://doi.org/10.1152/physrev.00055.2003
Ahmad FJ, He Y, Myers KA et al (2006) Effects of dynactin disruption and dynein depletion on axonal microtubules. Traffic 7(5):524–537. https://doi.org/10.1111/j.1600-0854.2006.00403.x
Allen NC, Bagade S, McQueen MB et al (2008) Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 40(7):827–834. https://doi.org/10.1038/ng.171
Angelucci F, Gruber SH, El Khoury A et al (2007) Chronic amphetamine treatment reduces NGF and BDNF in the rat brain. Eur Neuropsychopharmacol 17(12):756–762. https://doi.org/10.1016/j.euroneuro.2007.03.002
Anttila S, Illi A, Kampman O et al (2005) Lack of association between two polymorphisms of brain-derived neurotrophic factor and response to typical neuroleptics. J Neural Transm 112(7):885–890. https://doi.org/10.1007/s00702-004-0233-9
Arioka Y, Hirata A, Kushima I et al (2020) Characterization of a schizophrenia patient with a rare RELN deletion by combining genomic and patient-derived cell analyses. Schizophr Res 216:511–515. https://doi.org/10.1016/j.schres.2019.10.038
Arnold SE, Talbot K, Hahn CG (2005) Neurodevelopment, neuroplasticity, and new genes for schizophrenia. Prog Brain Res 147:319–345. https://doi.org/10.1016/S0079-6123(04)47023-X
Austin CP, Ma L, Ky B et al (2003) DISC1 (disrupted in Schizophrenia-1) is expressed in limbic regions of the primate brain. NeuroReport 14(7):951–954. https://doi.org/10.1097/01.wnr.0000074342.81633.63
Austin CP, Ky B, Ma L et al (2004) Expression of Disrupted-In-Schizophrenia-1, a schizophrenia-associated gene, is prominent in the mouse hippocampus throughout brain development. Neuroscience 124(1):3–10. https://doi.org/10.1016/j.neuroscience.2003.11.010
Bai W, Fu Y, Yu X et al (2019) Association between RELN polymorphisms and schizophrenia in a Han population from Northeast China. Psychiatr Genet 29(6):232–236. https://doi.org/10.1097/YPG.0000000000000235
Bai W, Niu Y, Yu X et al (2020) Decreased serum levels of reelin in patients with schizophrenia. Asian J Psychiatr 49:101995. https://doi.org/10.1016/j.ajp.2020.101995
Beaudet AL, Belmont JW (2008) Array-based DNA diagnostics: let the revolution begin. Annu Rev Med 59:113–129. https://doi.org/10.1146/annurev.med.59.012907.101800
Bebek G, Yang J (2007) PathFinder: mining signal transduction pathway segments from protein-protein interaction networks. BMC Bioinformatics 8:335. https://doi.org/10.1186/1471-2105-8-335
Bergen SE, Petryshen TL (2012) Genome-wide association studies of schizophrenia: does bigger lead to better results? Curr Opin Psychiatry 25(2):76–82. https://doi.org/10.1097/YCO.0b013e32835035dd
Bernstein HG, Dobrowolny H, Keilhoff G et al (2018) Reduced density of DISC1 expressing astrocytes in the Dentate Gyrus but not in the Subventricular Zone in Schizophrenia. Neuropsychopharmacology 43(3):457–458. https://doi.org/10.1038/npp.2017.242
Bersani G, Iannitelli A, Massoni E et al (2004) Ultradian variation of nerve growth factor plasma levels in healthy and schizophrenic subjects. Int J ImmunoPathol Pharmacol 17(3):367–372. https://doi.org/10.1177/039463200401700316
Biedermann F, Fleischhacker WW (2016) Psychotic disorders in DSM-5 and ICD-11. CNS Spectr 21(4):349–354. https://doi.org/10.1017/S1092852916000316
Blackwood DH, Muir WJ (2004) Clinical phenotypes associated with DISC1, a candidate gene for schizophrenia. Neurotox Res 6(1):35–41. https://doi.org/10.1007/BF03033294
Bleuler E (2010) [Dementia praecox or the group of schizophrenias]. Vertex 21(93):394–400
Bleuler M, Bleuler R (1986) Dementia praecox oder die Gruppe der Schizophrenien: Eugen Bleuler. Br J Psychiatry 149:661–662. https://doi.org/10.1192/bjp.149.5.661
Bolat Kaya O, Kaya H, Civan Kahve A et al (2022) Association of BDNF gene Val66Met polymorphism with suicide attempts, focused attention and response inhibition in patients with Schizophrenia. Noro Psikiyatr Ars 59(2):91–97. https://doi.org/10.29399/npa.27647
Bomprezzi R, Kovanen PE, Martin R (2003) New approaches to investigating heterogeneity in complex traits. J Med Genet 40(8):553–559. https://doi.org/10.1136/jmg.40.8.553
Bousman CA, Cropley V, Klauser P et al (2018) Neuregulin-1 (NRG1) polymorphisms linked with psychosis transition are associated with enlarged lateral ventricles and white matter disruption in schizophrenia. Psychol Med 48(5):801–809. https://doi.org/10.1017/S0033291717002173
Boutros NN, Mucci A, Diwadkar V et al (2014) Negative symptoms in schizophrenia. Clin Schizophr Relat Psychoses 8(1):28–35. https://doi.org/10.3371/CSRP.BOMU.012513
Boyd A, Aragon IV, Abou Saleh L et al (2021) The cAMP-phosphodiesterase 4 (PDE4) controls beta-adrenoceptor- and CFTR-dependent saliva secretion in mice. Biochem J 478(10):1891–1906. https://doi.org/10.1042/BCJ20210212
Boyer P, Phillips JL, Rousseau FL et al (2007) Hippocampal abnormalities and memory deficits: new evidence of a strong pathophysiological link in schizophrenia. Brain Res Rev 54(1):92–112. https://doi.org/10.1016/j.brainresrev.2006.12.008
Braem MG, Schouten LJ, Peeters PH et al (2011) Genetic susceptibility to sporadic ovarian cancer: a systematic review. Biochim Biophys Acta 1816(2):132–146. https://doi.org/10.1016/j.bbcan.2011.05.002
Buck SA, Quincy Erickson-Oberg M, Logan RW et al (2022) Relevance of interactions between dopamine and glutamate neurotransmission in schizophrenia. Mol Psychiatry 27(9):3583–3591. https://doi.org/10.1038/s41380-022-01649-w
Burdick KE, DeRosse P, Kane JM et al (2010) Association of genetic variation in the MET proto-oncogene with schizophrenia and general cognitive ability. Am J Psychiatry 167(4):436–443. https://doi.org/10.1176/appi.ajp.2009.09050615
Burke DF, Worth CL, Priego EM et al (2007) Genome bioinformatic analysis of nonsynonymous SNPs. BMC Bioinformatics 8:301. https://doi.org/10.1186/1471-2105-8-301
Callicott JH, Straub RE, Pezawas L et al (2005) Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proc Natl Acad Sci U S A 102(24):8627–8632. https://doi.org/10.1073/pnas.0500515102
Cannon TD, Hennah W, van Erp TG et al (2005) Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short- and long-term memory. Arch Gen Psychiatry 62(11):1205–1213. https://doi.org/10.1001/archpsyc.62.11.1205
Cardno AG, Gottesman II (2000) Twin studies of schizophrenia: from bow-and-arrow concordances to star wars mx and functional genomics. Am J Med Genet 97(1):12–17
Cardno AG, Holmans PA, Rees MI et al (2001) A genomewide linkage study of age at onset in schizophrenia. Am J Med Genet 105(5):439–445. https://doi.org/10.1002/ajmg.1404
Carvalho B, Bengtsson H, Speed TP et al (2007) Exploration, normalization, and genotype calls of high-density oligonucleotide SNP array data. Biostatistics 8(2):485–499. https://doi.org/10.1093/biostatistics/kxl042
Cassella SN, Hemmerle AM, Lundgren KH et al (2016) Maternal immune activation alters glutamic acid decarboxylase-67 expression in the brains of adult rat offspring. Schizophr Res 171(1–3):195–199. https://doi.org/10.1016/j.schres.2016.01.041
Chang JP, Huang KH, Lin CH et al (2020) Genetic Effects of DISC1 and G72 (DAOA) on visual learning of patients with Schizophrenia. Neuropsychiatr Dis Treat 16:771–780. https://doi.org/10.2147/NDT.S235675
Cheah SY, Lawford BR, Young RM et al (2017) mRNA expression and DNA methylation analysis of serotonin receptor 2A (HTR2A) in the human schizophrenic brain. Genes (Basel) 8(1). https://doi.org/10.3390/genes8010014
Chen J, Cao F, Liu L et al (2015) Genetic studies of schizophrenia: an update. Neurosci Bull 31(1):87–98. https://doi.org/10.1007/s12264-014-1494-4
Chen L, Zhu L, Xu J et al (2022a) Disrupted in Schizophrenia 1 regulates ectopic neurogenesis in the mouse Hilus after Pilocarpine-induced Status Epilepticus. Neuroscience 494:69–81. https://doi.org/10.1016/j.neuroscience.2022.05.009
Chen YM, Lin CH, Lane HY (2022b) Distinctively lower DISC1 mRNA levels in patients with schizophrenia, especially in those with higher positive, negative, and depressive symptoms. Pharmacol Biochem Behav 213:173335. https://doi.org/10.1016/j.pbb.2022.173335
Cho Y, Ryu S, Huh I et al (2015) Effects of genetic variations in NRG1 on cognitive domains in patients with schizophrenia and healthy individuals. Psychiatr Genet 25(4):147–154. https://doi.org/10.1097/YPG.0000000000000087
Clark L, Cools R, Robbins TW (2004) The neuropsychology of ventral prefrontal cortex: decision-making and reversal learning. Brain Cogn 55(1):41–53. https://doi.org/10.1016/S0278-2626(03)00284-7
Cragle CE, MacNicol MC, Byrum SD et al (2019) Musashi interaction with poly(A)-binding protein is required for activation of target mRNA translation. J Biol Chem 294(28):10969–10986. https://doi.org/10.1074/jbc.RA119.007220
Curley AA, Eggan SM, Lazarus MS et al (2013) Role of glutamic acid decarboxylase 67 in regulating cortical parvalbumin and GABA membrane transporter 1 expression: implications for schizophrenia. Neurobiol Dis 50:179–186. https://doi.org/10.1016/j.nbd.2012.10.018
D’Arcangelo G (2006) Reelin mouse mutants as models of cortical development disorders. Epilepsy Behav 8(1):81–90. https://doi.org/10.1016/j.yebenh.2005.09.005
Dean B (2001) A predicted cortical serotonergic/cholinergic/GABAergic interface as a site of pathology in schizophrenia. Clin Exp Pharmacol Physiol 28(1–2):74–78. https://doi.org/10.1046/j.1440-1681.2001.03401.x
DeRosse P, Hodgkinson CA, Lencz T et al (2007) Disrupted in schizophrenia 1 genotype and positive symptoms in schizophrenia. Biol Psychiatry 61(10):1208–1210. https://doi.org/10.1016/j.biopsych.2006.07.023
Devlin B, Roeder K, Wasserman L (2001) Genomic control, a new approach to genetic-based association studies. Theor Popul Biol 60(3):155–166. https://doi.org/10.1006/tpbi.2001.1542
Dietz AG, Goldman SA, Nedergaard M (2020) Glial cells in schizophrenia: a unified hypothesis. Lancet Psychiatry 7(3):272–281. https://doi.org/10.1016/S2215-0366(19)30302-5
Divito CB, Underhill SM (2014) Excitatory amino acid transporters: roles in glutamatergic neurotransmission. Neurochem Int 73:172–180. https://doi.org/10.1016/j.neuint.2013.12.008
Dong E, Agis-Balboa RC, Simonini MV et al (2005) Reelin and glutamic acid decarboxylase67 promoter remodeling in an epigenetic methionine-induced mouse model of schizophrenia. Proc Natl Acad Sci U S A 102(35):12578–12583. https://doi.org/10.1073/pnas.0505394102
Dong J, Chen W, Liu N et al (2022) NRG1 knockdown rescues PV interneuron GABAergic maturation deficits and schizophrenia behaviors in fetal growth restriction mice. Cell Death Discov 8(1):476. https://doi.org/10.1038/s41420-022-01271-3
Du Y, Xie J, Chang W et al (2012) Genome-wide association studies: inherent limitations and future challenges. Front Med 6(4):444–450. https://doi.org/10.1007/s11684-012-0225-3
Duan X, Chang JH, Ge S et al (2007) Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 130(6):1146–1158. https://doi.org/10.1016/j.cell.2007.07.010
Duan J, Sanders AR, Gejman PV (2010) Genome-wide approaches to schizophrenia. Brain Res Bull 83(3–4):93–102. https://doi.org/10.1016/j.brainresbull.2010.04.009
Egerton A, Modinos G, Ferrera D et al (2017) Neuroimaging studies of GABA in schizophrenia: a systematic review with meta-analysis. Transl Psychiatry 7(6):e1147. https://doi.org/10.1038/tp.2017.124
Egerton A, Grace AA, Stone J et al (2020) Glutamate in schizophrenia: neurodevelopmental perspectives and drug development. Schizophr Res 223:59–70. https://doi.org/10.1016/j.schres.2020.09.013
Facal F, Costas J (2019) Evidence of association of the DISC1 interactome gene set with schizophrenia from GWAS. Prog Neuropsychopharmacol Biol Psychiatry 95:109729. https://doi.org/10.1016/j.pnpbp.2019.109729
Faraone SV, Larsson H (2019) Genetics of attention deficit hyperactivity disorder. Mol Psychiatry 24(4):562–575. https://doi.org/10.1038/s41380-018-0070-0
Fatemi SH, Folsom TD (2009) The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophr Bull 35(3):528–548. https://doi.org/10.1093/schbul/sbn187
Fatemi SH, Earle JA, McMenomy T (2000) Reduction in Reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol Psychiatry 5(6):654–663. https://doi.org/10.1038/sj.mp.4000783
Fernandez-Castillo N, Cabana-Dominguez J, Corominas R et al (2022) Molecular genetics of cocaine use disorders in humans. Mol Psychiatry 27(1):624–639. https://doi.org/10.1038/s41380-021-01256-1
Fomsgaard L, Moreno JL, de la Fuente Revenga M et al (2018) Differences in 5-HT2A and mGlu2 receptor expression levels and repressive epigenetic modifications at the 5-HT2A promoter region in the roman Low- (RLA-I) and High- (RHA-I) avoidance rat strains. Mol Neurobiol 55(3):1998–2012. https://doi.org/10.1007/s12035-017-0457-y
Freedman R (2003) Schizophrenia N Engl J Med 349(18):1738–1749. https://doi.org/10.1056/NEJMra035458
Fu X, Wang J, Du J et al (2020) BDNF gene’s role in Schizophrenia: from risk allele to methylation implications. Front Psychiatry 11:564277. https://doi.org/10.3389/fpsyt.2020.564277
Gaebel W, Zielasek J, Cleveland HR (2013) Psychotic disorders in ICD-11. Asian J Psychiatr 6(3):263–265. https://doi.org/10.1016/j.ajp.2013.04.002
Gauthier MK, Kosciuczyk K, Tapley L et al (2013) Dysregulation of the neuregulin-1-ErbB network modulates endogenous oligodendrocyte differentiation and preservation after spinal cord injury. Eur J Neurosci 38(5):2693–2715. https://doi.org/10.1111/ejn.12268
Genomes Project C, Abecasis GR, Auton A et al (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491(7422):56–65. https://doi.org/10.1038/nature11632
George RA, Liu JY, Feng LL et al (2006) Analysis of protein sequence and interaction data for candidate disease gene prediction. Nucleic Acids Res 34(19):e130. https://doi.org/10.1093/nar/gkl707
Geschwind DH, Flint J (2015) Genetics and genomics of psychiatric disease. Science 349(6255):1489–1494. https://doi.org/10.1126/science.aaa8954
Ghashghaei HT, Weber J, Pevny L et al (2006) The role of neuregulin-ErbB4 interactions on the proliferation and organization of cells in the subventricular zone. Proc Natl Acad Sci U S A 103(6):1930–1935. https://doi.org/10.1073/pnas.0510410103
Glikmann-Johnston Y, Saling MM, Reutens DC et al (2015) Hippocampal 5-HT1A receptor and spatial learning and memory. Front Pharmacol 6:289. https://doi.org/10.3389/fphar.2015.00289
Goldberg A, Curtis CL, Kleim JA (2015) Linking genes to neurological clinical practice: the genomic basis for neurorehabilitation. J Neurol Phys Ther 39(1):52–61. https://doi.org/10.1097/NPT.0000000000000066
Gorlov IP, Gorlova OY, Sunyaev SR et al (2008) Shifting paradigm of association studies: value of rare single-nucleotide polymorphisms. Am J Hum Genet 82(1):100–112. https://doi.org/10.1016/j.ajhg.2007.09.006
Gou N, Liu Z, Palaniyappan L et al (2018) Effects of DISC1 polymorphisms on resting-state spontaneous neuronal activity in the early-stage of Schizophrenia. Front Psychiatry 9:137. https://doi.org/10.3389/fpsyt.2018.00137
Grayson DR, Jia XM, Chen Y et al (2005) Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci USA 102(26):9341–9346. https://doi.org/10.1073/pnas.0503736102
Grozdanov V, Bliederhaeuser C, Ruf WP et al (2014) Inflammatory dysregulation of blood monocytes in Parkinson’s disease patients. Acta Neuropathol 128(5):651–663. https://doi.org/10.1007/s00401-014-1345-4
Guidotti A, Auta J, Davis JM et al (2000) Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry 57(11):1061–1069. https://doi.org/10.1001/archpsyc.57.11.1061
Hakak Y, Walker JR, Li C et al (2001) Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci U S A 98(8):4746–4751. https://doi.org/10.1073/pnas.081071198
Hamshere ML, Bennett P, Williams N et al (2005) Genomewide linkage scan in schizoaffective disorder: significant evidence for linkage at 1q42 close to DISC1, and suggestive evidence at 22q11 and 19p13. Arch Gen Psychiatry 62(10):1081–1088. https://doi.org/10.1001/archpsyc.62.10.1081
Han M, Deng C (2020) BDNF as a pharmacogenetic target for antipsychotic treatment of schizophrenia. Neurosci Lett 726:133870. https://doi.org/10.1016/j.neulet.2018.10.015
Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10(1):40–68. https://doi.org/10.1038/sj.mp.4001558. (image 45)
Harrow M, Jobe TH, Faull RN (2012) Do all schizophrenia patients need antipsychotic treatment continuously throughout their lifetime? A 20-year longitudinal study. Psychol Med 42(10):2145–2155. https://doi.org/10.1017/S0033291712000220
Hawi Z, Straub RE, O’Neill A et al (1998) No linkage or linkage disequilibrium between brain-derived neurotrophic factor (BDNF) dinucleotide repeat polymorphism and schizophrenia in irish families. Psychiatry Res 81(2):111–116. https://doi.org/10.1016/s0165-1781(98)00076-6
He BS, Zhang LY, Pan YQ et al (2016) Association of the DISC1 and NRG1 genetic polymorphisms with schizophrenia in a chinese population. Gene 590(2):293–297. https://doi.org/10.1016/j.gene.2016.05.035
Hindorff LA, Sethupathy P, Junkins HA et al (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106(23):9362–9367. https://doi.org/10.1073/pnas.0903103106
Hiser J, Koenigs M (2018) The multifaceted role of the Ventromedial Prefrontal cortex in emotion, decision making, Social Cognition, and psychopathology. Biol Psychiatry 83(8):638–647. https://doi.org/10.1016/j.biopsych.2017.10.030
Hodgkinson CA, Goldman D, Jaeger J et al (2004) Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am J Hum Genet 75(5):862–872. https://doi.org/10.1086/425586
Hofmann LA, Lau S, Kirchebner J (2022) Maintaining social capital in offenders with schizophrenia spectrum disorder-An explorative analysis of influential factors. Front Psychiatry 13:945732. https://doi.org/10.3389/fpsyt.2022.945732
Hu G, Yang C, Zhao L et al (2018) The interaction of NOS1AP, DISC1, DAOA, and GSK3B confers susceptibility of early-onset schizophrenia in chinese Han population. Prog Neuropsychopharmacol Biol Psychiatry 81:187–193. https://doi.org/10.1016/j.pnpbp.2017.10.017
Huang E, Hettige NC, Zai G et al (2019) BDNF Val66Met polymorphism and clinical response to antipsychotic treatment in schizophrenia and schizoaffective disorder patients: a meta-analysis. Pharmacogenomics J 19(3):269–276. https://doi.org/10.1038/s41397-018-0041-5
Hwu HG, Liu CM, Fann CS et al (2003) Linkage of schizophrenia with chromosome 1q loci in taiwanese families. Mol Psychiatry 8(4):445–452. https://doi.org/10.1038/sj.mp.4001235
Insel TR (2010) Rethinking schizophrenia. Nature 468(7321):187–193. https://doi.org/10.1038/nature09552
International Schizophrenia C, Purcell SM, Wray NR et al (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460(7256):748–752. https://doi.org/10.1038/nature08185
Iovino L, Tremblay ME, Civiero L (2020) Glutamate-induced excitotoxicity in Parkinson’s disease: the role of glial cells. J Pharmacol Sci 144(3):151–164. https://doi.org/10.1016/j.jphs.2020.07.011
Jablensky A (2000) Epidemiology of schizophrenia: the global burden of disease and disability. Eur Arch Psychiatry Clin Neurosci 250(6):274–285. https://doi.org/10.1007/s004060070002
Jablensky A (2006) Subtyping schizophrenia: implications for genetic research. Mol Psychiatry 11(9):815–836. https://doi.org/10.1038/sj.mp.4001857
Jablensky A, Sartorius N, Ernberg G et al (1992) Schizophrenia: manifestations, incidence and course in different cultures. A World Health Organization ten-country study. Psychol Med Monogr Suppl 20:1–97. https://doi.org/10.1017/s0264180100000904
Jorgensen TJ, Ruczinski I, Kessing B et al (2009) Hypothesis-driven candidate gene association studies: practical design and analytical considerations. Am J Epidemiol 170(8):986–993. https://doi.org/10.1093/aje/kwp242
Kalb R (2005) The protean actions of neurotrophins and their receptors on the life and death of neurons. Trends Neurosci 28(1):5–11. https://doi.org/10.1016/j.tins.2004.11.003
Kamiya A, Kubo K, Tomoda T et al (2005) A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nat Cell Biol 7(12):1167–1178. https://doi.org/10.1038/ncb1328
Kamiya A, Tomoda T, Chang J et al (2006) DISC1-NDEL1/NUDEL protein interaction, an essential component for neurite outgrowth, is modulated by genetic variations of DISC1. Hum Mol Genet 15(22):3313–3323. https://doi.org/10.1093/hmg/ddl407
Kavvoura FK, McQueen MB, Khoury MJ et al (2008) Evaluation of the potential excess of statistically significant findings in published genetic association studies: application to Alzheimer’s disease. Am J Epidemiol 168(8):855–865. https://doi.org/10.1093/aje/kwn206
Kelley ME, White L, Compton MT et al (2013) Subscale structure for the positive and negative syndrome scale (PANSS): a proposed solution focused on clinical validity. Psychiatry Res 205(1–2):137–142. https://doi.org/10.1016/j.psychres.2012.08.019
Khandaker GM, Cousins L, Deakin J et al (2015) Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry 2(3):258–270. https://doi.org/10.1016/S2215-0366(14)00122-9
Kim HJ, Park HJ, Jung KH et al (2008) Association study of polymorphisms between DISC1 and schizophrenia in a korean population. Neurosci Lett 430(1):60–63. https://doi.org/10.1016/j.neulet.2007.10.010
Kim Y, Zerwas S, Trace SE et al (2011) Schizophrenia genetics: where next? Schizophr Bull 37(3):456–463. https://doi.org/10.1093/schbul/sbr031
Klein MO, Battagello DS, Cardoso AR et al (2019) Dopamine: functions, signaling, and Association with neurological Diseases. Cell Mol Neurobiol 39(1):31–59. https://doi.org/10.1007/s10571-018-0632-3
Knable MB, Barci BM, Webster MJ et al (2004) Molecular abnormalities of the hippocampus in severe psychiatric illness: postmortem findings from the Stanley Neuropathology Consortium. Mol Psychiatry 9(6):609–620. https://doi.org/10.1038/sj.mp.4001471
Konradi C, Heckers S (2003) Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol Ther 97(2):153–179. https://doi.org/10.1016/s0163-7258(02)00328-5
Kremen WS, Seidman LJ, Faraone SV et al (2004) Heterogeneity of schizophrenia: a study of individual neuropsychological profiles. Schizophr Res 71(2–3):307–321. https://doi.org/10.1016/j.schres.2004.02.022
Krogmann A, Peters L, von Hardenberg L et al (2019) Keeping up with the therapeutic advances in schizophrenia: a review of novel and emerging pharmacological entities. CNS Spectr 24(S1):38–69. https://doi.org/10.1017/S109285291900124X
Kuhn S, Gallinat J (2013) Resting-state brain activity in schizophrenia and major depression: a quantitative meta-analysis. Schizophr Bull 39(2):358–365. https://doi.org/10.1093/schbul/sbr151
Kumar PK, Mitra P, Ghosh R et al (2020) Association of circulating BDNF levels with BDNF rs6265 polymorphism in schizophrenia. Behav Brain Res 394:112832. https://doi.org/10.1016/j.bbr.2020.112832
Kwon JM, Goate AM (2000) The candidate gene approach. Alcohol Res Health 24(3):164–168
Lai CY, Scarr E, Udawela M et al (2016) Biomarkers in schizophrenia: a focus on blood based diagnostics and theranostics. World J Psychiatry 6(1):102–117. https://doi.org/10.5498/wjp.v6.i1.102
Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11(3):241–247. https://doi.org/10.1038/ng1195-241
Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921. https://doi.org/10.1038/35057062
Lappalainen T, Scott AJ, Brandt M et al (2019) Genomic analysis in the age of human genome sequencing. Cell 177(1):70–84. https://doi.org/10.1016/j.cell.2019.02.032
Laruelle M, Abi-Dargham A, van Dyck CH et al (1996) Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci U S A 93(17):9235–9240. https://doi.org/10.1073/pnas.93.17.9235
Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 460(2):525–542. https://doi.org/10.1007/s00424-010-0809-1
Legge SE, Santoro ML, Periyasamy S et al (2021) Genetic architecture of schizophrenia: a review of major advancements. Psychol Med 51(13):2168–2177. https://doi.org/10.1017/S0033291720005334
Leiser SC, Li Y, Pehrson AL et al (2015) Serotonergic regulation of prefrontal cortical circuitries involved in Cognitive Processing: a review of individual 5-HT receptor mechanisms and concerted Effects of 5-HT receptors exemplified by the Multimodal antidepressant vortioxetine. ACS Chem Neurosci 6(7):970–986. https://doi.org/10.1021/cn500340j
Lesnick TG, Papapetropoulos S, Mash DC et al (2007) A genomic pathway approach to a complex disease: axon guidance and Parkinson disease. PLoS Genet 3(6):e98. https://doi.org/10.1371/journal.pgen.0030098
Lewis DA, Lieberman JA (2000) Catching up on schizophrenia: natural history and neurobiology. Neuron 28(2):325–334. https://doi.org/10.1016/s0896-6273(00)00111-2
Li Q, Powell N, Zhang H et al (2011a) Endothelial IL-1R1 is a critical mediator of EAE pathogenesis. Brain Behav Immun 25(1):160–167. https://doi.org/10.1016/j.bbi.2010.09.009
Li W, Song X, Zhang H et al (2011b) Association study of RELN polymorphisms with schizophrenia in Han Chinese population. Prog Neuropsychopharmacol Biol Psychiatry 35(6):1505–1511. https://doi.org/10.1016/j.pnpbp.2011.04.007
Li W, Zhou N, Yu Q et al (2013) Association of BDNF gene polymorphisms with schizophrenia and clinical symptoms in a chinese population. Am J Med Genet B Neuropsychiatr Genet 162B(6):538–545. https://doi.org/10.1002/ajmg.b.32183
Lieberman JA, First MB (2018) Psychotic disorders. N Engl J Med 379(3):270–280. https://doi.org/10.1056/NEJMra1801490
Lieberman JA, Kane JM, Alvir J (1987) Provocative tests with psychostimulant drugs in schizophrenia. Psychopharmacology 91(4):415–433. https://doi.org/10.1007/BF00216006
Lin SH, Lee LT, Yang YK (2014) Serotonin and mental disorders: a concise review on molecular neuroimaging evidence. Clin Psychopharmacol Neurosci 12(3):196–202. https://doi.org/10.9758/cpn.2014.12.3.196
Liu W, Zhao W, Chase GA (2006) The impact of missing and erroneous genotypes on tagging SNP selection and power of subsequent association tests. Hum Hered 61(1):31–44. https://doi.org/10.1159/000092141
Liu W, Yang T, Zhao W et al (2007) Accounting for genotyping errors in tagging SNP selection. Ann Hum Genet 71(Pt 4):467–479. https://doi.org/10.1111/j.1469-1809.2007.00354.x
Liu L, Jia F, Yuan G et al (2010a) Tyrosine hydroxylase, interleukin-1beta and tumor necrosis factor-alpha are overexpressed in peripheral blood mononuclear cells from schizophrenia patients as determined by semi-quantitative analysis. Psychiatry Res 176(1):1–7. https://doi.org/10.1016/j.psychres.2008.10.024
Liu Y, Chen PL, McGrath J et al (2010b) Replication of an association of a common variant in the reelin gene (RELN) with schizophrenia in Ashkenazi jewish women. Psychiatr Genet 20(4):184–186. https://doi.org/10.1097/YPG.0b013e32833a220b
Liu J, Wang P, Sun L et al (2021) The association between BDNF levels and risperidone-induced weight gain is dependent on the BDNF Val66Met polymorphism in antipsychotic-naive first episode schizophrenia patients: a 12-week prospective study. Transl Psychiatry 11(1):458. https://doi.org/10.1038/s41398-021-01585-3
Loh HC, Tang PY, Tee SF et al (2013) Neuregulin-1 (NRG-1) and its susceptibility to schizophrenia: a case-control study and meta-analysis. Psychiatry Res 208(2):186–188. https://doi.org/10.1016/j.psychres.2013.01.022
Louveau A, Smirnov I, Keyes TJ et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523(7560):337–341. https://doi.org/10.1038/nature14432
Loy JH, Merry SN, Hetrick SE et al (2017) Atypical antipsychotics for disruptive behaviour disorders in children and youths. Cochrane Database Syst Rev 8(8):CD008559. https://doi.org/10.1002/14651858.CD008559.pub3
Luan Z (2017) Susceptibility genes for schizophrenia and their functional relationships. [Thesis fully internal (DIV), University of Groningen]. Rijksuniversiteit Groningen
Luan Z, Lu T, Ruan Y et al (2016) The human MSI2 gene is associated with schizophrenia in the Chinese Han population. Neurosci Bull 32(3):239–245. https://doi.org/10.1007/s12264-016-0026-9
Luan ZL, Cui XH, Xu H et al (2017) Association of MSI2 gene polymorphism with age-at-onset of schizophrenia in a Chinese Population. Neurosci Bull 33(6):731–733. https://doi.org/10.1007/s12264-017-0176-4
Luo X, Jin C, Zhou Z et al (2015) New findings support the association of DISC1 genetic variants with susceptibility to schizophrenia in the Han Chinese population. Psychiatry Res 228(3):966–968. https://doi.org/10.1016/j.psychres.2015.05.115
Luo X, Jin C, Zhou Z et al (2016) Association study of DISC1 genetic variants with the risk of schizophrenia. Psychiatr Genet 26(3):132–135. https://doi.org/10.1097/YPG.0000000000000123
Luo X, Chen S, Xue L et al (2019) SNP variation of RELN gene and schizophrenia in a Chinese population: a hospital-based case-control study. Front Genet 10:175. https://doi.org/10.3389/fgene.2019.00175
Ma JH, Sun XY, Guo TJ et al (2018) Association on DISC1 SNPs with schizophrenia risk: a meta-analysis. Psychiatry Res 270:306–309. https://doi.org/10.1016/j.psychres.2018.09.056
Magi S, Piccirillo S, Amoroso S et al (2019) Excitatory amino acid transporters (EAATs): Glutamate transport and beyond. Int J Mol Sci 20(22). https://doi.org/10.3390/ijms20225674
Maksymetz J, Moran SP, Conn PJ (2017) Targeting metabotropic glutamate receptors for novel treatments of schizophrenia. Mol Brain 10(1):15. https://doi.org/10.1186/s13041-017-0293-z
Manolio TA, Brooks LD, Collins FS (2008) A HapMap harvest of insights into the genetics of common disease. J Clin Invest 118(5):1590–1605. https://doi.org/10.1172/JCI34772
Maroney M (2020) An update on current treatment strategies and emerging agents for the management of schizophrenia. Am J Manag Care 26(3 Suppl):S55–S61. https://doi.org/10.37765/ajmc.2020.43012
Martinez-Pinteno A, Mezquida G, Bioque M et al (2022) The role of BDNF and NGF plasma levels in first-episode schizophrenia: a longitudinal study. Eur Neuropsychopharmacol 57:105–117. https://doi.org/10.1016/j.euroneuro.2022.02.003
Marzan S, Aziz MA, Islam MS (2021) Association between REELIN Gene polymorphisms (rs7341475 and rs262355) and risk of Schizophrenia: an updated Meta-analysis. J Mol Neurosci 71(4):675–690. https://doi.org/10.1007/s12031-020-01696-4
McClellan JM, Susser E, King MC (2007) Schizophrenia: a common disease caused by multiple rare alleles. Br J Psychiatry 190:194–199. https://doi.org/10.1192/bjp.bp.106.025585
McCutcheon RA, Reis Marques T, Howes OD (2020) Schizophrenia-An overview. JAMA Psychiat 77(2):201–210. https://doi.org/10.1001/jamapsychiatry.2019.3360
McGrath J, Saha S, Welham J et al (2004) A systematic review of the incidence of schizophrenia: the distribution of rates and the influence of sex, urbanicity, migrant status and methodology. BMC Med 2:13. https://doi.org/10.1186/1741-7015-2-13
Meneses A (2015) Serotonin, neural markers, and memory. Front Pharmacol 6:143. https://doi.org/10.3389/fphar.2015.00143
Millar JK, Wilson-Annan JC, Anderson S et al (2000) Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 9(9):1415–1423. https://doi.org/10.1093/hmg/9.9.1415
Millar JK, Christie S, Anderson S et al (2001) Genomic structure and localisation within a linkage hotspot of disrupted in Schizophrenia 1, a gene disrupted by a translocation segregating with schizophrenia. Mol Psychiatry 6(2):173–178. https://doi.org/10.1038/sj.mp.4000784
Millar JK, Mackie S, Clapcote SJ et al (2007) Disrupted in schizophrenia 1 and phosphodiesterase 4B: towards an understanding of psychiatric illness. J Physiol 584(Pt 2):401–405. https://doi.org/10.1113/jphysiol.2007.140210
Miller AH, Raison CL (2016) The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol 16(1):22–34. https://doi.org/10.1038/nri.2015.5
Mitchell KJ, Porteous DJ (2011) Rethinking the genetic architecture of schizophrenia. Psychol Med 41(1):19–32. https://doi.org/10.1017/S003329171000070X
Mohamed ZI, Tee SF, Tang PY (2018) Association of functional polymorphisms in 3’-untranslated regions of COMT, DISC1, and DTNBP1 with schizophrenia: a meta-analysis. Psychiatr Genet 28(6):110–119. https://doi.org/10.1097/YPG.0000000000000210
Moises HW, Yang L, Kristbjarnarson H et al (1995) An international two-stage genome-wide search for schizophrenia susceptibility genes. Nat Genet 11(3):321–324. https://doi.org/10.1038/ng1195-321
Mora G (1966) The history of psychiatry: a cultural and bibliographical survey. Int J Psychiatry 2(3):335–366
Mostaid MS, Lee TT, Chana G et al (2017) Elevated peripheral expression of neuregulin-1 (NRG1) mRNA isoforms in clozapine-treated schizophrenia patients. Transl Psychiatry 7(12):1280. https://doi.org/10.1038/s41398-017-0041-2
Munafo MR, Attwood AS, Flint J (2008) Neuregulin 1 genotype and schizophrenia. Schizophr Bull 34(1):9–12. https://doi.org/10.1093/schbul/sbm129
Murray RM, Bhavsar V, Tripoli G et al (2017) 30 years on: how the neurodevelopmental hypothesis of Schizophrenia Morphed into the developmental risk factor model of psychosis. Schizophr Bull 43(6):1190–1196. https://doi.org/10.1093/schbul/sbx121
Nabil Fikri RM, Norlelawati AT, Nour El-Huda AR et al (2017) Reelin (RELN) DNA methylation in the peripheral blood of schizophrenia. J Psychiatr Res 88:28–37. https://doi.org/10.1016/j.jpsychires.2016.12.020
Nakazawa K, Sapkota K (2020) The origin of NMDA receptor hypofunction in schizophrenia. Pharmacol Ther 205:107426. https://doi.org/10.1016/j.pharmthera.2019.107426
Nawwar DA, Zaki HF, Sayed RH (2022) Role of the NRG1/ErbB4 and PI3K/AKT/mTOR signaling pathways in the anti-psychotic effects of aripiprazole and sertindole in ketamine-induced schizophrenia-like behaviors in rats. Inflammopharmacology 30(5):1891–1907. https://doi.org/10.1007/s10787-022-01031-w
Nicholls HL, John CR, Watson DS et al (2020) Reaching the end-game for GWAS: machine learning approaches for the prioritization of complex disease loci. Front Genet 11:350. https://doi.org/10.3389/fgene.2020.00350
Nicodemus KK, Luna A, Vakkalanka R et al (2006) Further evidence for association between ErbB4 and schizophrenia and influence on cognitive intermediate phenotypes in healthy controls. Mol Psychiatry 11(12):1062–1065. https://doi.org/10.1038/sj.mp.4001878
Nie F, Zhang Q, Ma J et al (2021) Schizophrenia risk candidate EGR3 is a novel transcriptional regulator of RELN and regulates neurite outgrowth via the Reelin signal pathway in vitro. J Neurochem 157(6):1745–1758. https://doi.org/10.1111/jnc.15225
Nieto RR, Carrasco A, Corral S et al (2021) BDNF as a biomarker of cognition in schizophrenia/psychosis: an updated review. Front Psychiatry 12:662407. https://doi.org/10.3389/fpsyt.2021.662407
Nishibe M, Toyoda H, Hiraga SI et al (2022) Synaptic and genetic bases of impaired motor learning associated with modified experience-dependent cortical plasticity in heterozygous reeler mutants. Cereb Cortex 32(3):504–519. https://doi.org/10.1093/cercor/bhab227
Nuechterlein KH, Barch DM, Gold JM et al (2004) Identification of separable cognitive factors in schizophrenia. Schizophr Res 72(1):29–39. https://doi.org/10.1016/j.schres.2004.09.007
O’Tuathaigh CM, Fumagalli F, Desbonnet L et al (2017) Epistatic and independent effects on schizophrenia-related phenotypes following co-disruption of the risk factors neuregulin-1 x DISC1. Schizophr Bull 43(1):214–225. https://doi.org/10.1093/schbul/sbw120
Okano H, Kawahara H, Toriya M et al (2005) Function of RNA-binding protein Musashi-1 in stem cells. Exp Cell Res 306(2):349–356. https://doi.org/10.1016/j.yexcr.2005.02.021
Olivier B (2015) Serotonin: a never-ending story. Eur J Pharmacol 753:2–18. https://doi.org/10.1016/j.ejphar.2014.10.031
Orhan F, Fatouros-Bergman H, Goiny M et al (2018) CSF GABA is reduced in first-episode psychosis and associates to symptom severity. Mol Psychiatry 23(5):1244–1250. https://doi.org/10.1038/mp.2017.25
Orzelska-Gorka J, Mikulska J, Wiszniewska A et al (2022) New atypical antipsychotics in the treatment of schizophrenia and depression. Int J Mol Sci 23(18). https://doi.org/10.3390/ijms231810624
Owen MJ (2000) Molecular genetic studies of schizophrenia. Brain Res Brain Res Rev 31(2–3):179–186. https://doi.org/10.1016/s0165-0173(99)00035-1
Owen MJ, Craddock N, O’Donovan MC (2010) Suggestion of roles for both common and rare risk variants in genome-wide studies of schizophrenia. Arch Gen Psychiatry 67(7):667–673. https://doi.org/10.1001/archgenpsychiatry.2010.69
Oya K, Kishi T, Iwata N (2014) Efficacy and tolerability of minocycline augmentation therapy in schizophrenia: a systematic review and meta-analysis of randomized controlled trials. Hum Psychopharmacol 29(5):483–491. https://doi.org/10.1002/hup.2426
Pan L, Cao Z, Chen L et al (2022) Association of BDNF and MMP-9 single-nucleotide polymorphisms with the clinical phenotype of schizophrenia. Front Psychiatry 13:941973. https://doi.org/10.3389/fpsyt.2022.941973
Pape K, Tamouza R, Leboyer M et al (2019) Immunoneuropsychiatry - novel perspectives on brain disorders. Nat Rev Neurol 15(6):317–328. https://doi.org/10.1038/s41582-019-0174-4
Park SM, Deering RP, Lu Y et al (2014) Musashi-2 controls cell fate, lineage bias, and TGF-beta signaling in HSCs. J Exp Med 211(1):71–87. https://doi.org/10.1084/jem.20130736
Patnala R, Clements J, Batra J (2013) Candidate gene association studies: a comprehensive guide to useful in silico tools. BMC Genet 14:39. https://doi.org/10.1186/1471-2156-14-39
Peralta V, Cuesta MJ (2004) The deficit syndrome of the psychotic illness. A clinical and nosological study. Eur Arch Psychiatry Clin Neurosci 254(3):165–171. https://doi.org/10.1007/s00406-004-0464-7
Peters BJ, Rodin AS, de Boer A et al (2010) Methodological and statistical issues in pharmacogenomics. J Pharm Pharmacol 62(2):161–166. https://doi.org/10.1211/jpp.62.02.0002
Pillinger T, Osimo EF, Brugger S et al (2019) A meta-analysis of immune parameters, variability, and assessment of modal distribution in psychosis and test of the immune subgroup hypothesis. Schizophr Bull 45(5):1120–1133. https://doi.org/10.1093/schbul/sby160
Ping J, Zhang J, Wan J et al (2021) Correlation of four single nucleotide polymorphisms of the RELN gene with schizophrenia. East Asian Arch Psychiatry 31(4):112–118. https://doi.org/10.12809/eaap2168
Ping J, Zhang J, Wan J et al (2022) A polymorphism in the BDNF gene (rs11030101) is associated with negative symptoms in Chinese Han patients with Schizophrenia. Front Genet 13:849227. https://doi.org/10.3389/fgene.2022.849227
Plitman E, Nakajima S, de la Fuente-Sandoval C et al (2014) Glutamate-mediated excitotoxicity in schizophrenia: a review. Eur Neuropsychopharmacol 24(10):1591–1605. https://doi.org/10.1016/j.euroneuro.2014.07.015
Price AL, Patterson NJ, Plenge RM et al (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38(8):904–909. https://doi.org/10.1038/ng1847
Psychiatric GCSC (2009) A framework for interpreting genome-wide association studies of psychiatric disorders. Mol Psychiatry 14(1):10–17. https://doi.org/10.1038/mp.2008.126
Puhahn-Schmeiser B, Kleemann T, Jabbarli R et al (2022) Granule cell dispersion in two mouse models of temporal lobe epilepsy and reeler mice is associated with changes in dendritic orientation and spine distribution. Hippocampus 32(7):517–528. https://doi.org/10.1002/hipo.23447
Puig MV, Gener T (2015) Serotonin modulation of prefronto-hippocampal rhythms in health and disease. ACS Chem Neurosci 6(7):1017–1025. https://doi.org/10.1021/cn500350e
Qu M, Tang F, Yue W et al (2007) Positive association of the disrupted-in-Schizophrenia-1 gene (DISC1) with schizophrenia in the Chinese Han population. Am J Med Genet B Neuropsychiatr Genet 144B(3):266–270. https://doi.org/10.1002/ajmg.b.30322
Reichenberg A (2005) Cognitive impairment as a risk factor for psychosis. Dialogues Clin Neurosci 7(1):31–38. https://doi.org/10.31887/DCNS.2005.7.1/areichenberg
Reif A, Fritzen S, Finger M et al (2006) Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry 11(5):514–522. https://doi.org/10.1038/sj.mp.4001791
Rimer M, Barrett DW, Maldonado MA et al (2005) Neuregulin-1 immunoglobulin-like domain mutant mice: clozapine sensitivity and impaired latent inhibition. NeuroReport 16(3):271–275. https://doi.org/10.1097/00001756-200502280-0001410
Robinson DG, Woerner MG, McMeniman M et al (2004) Symptomatic and functional recovery from a first episode of schizophrenia or schizoaffective disorder. Am J Psychiatry 161(3):473–479. https://doi.org/10.1176/appi.ajp.161.3.473
Rodriguez-Murillo L, Gogos JA, Karayiorgou M (2012) The genetic architecture of schizophrenia: new mutations and emerging paradigms. Annu Rev Med 63:63–80. https://doi.org/10.1146/annurev-med-072010-091100
Roeder K, Devlin B, Wasserman L (2007) Improving power in genome-wide association studies: weights tip the scale. Genet Epidemiol 31(7):741–747. https://doi.org/10.1002/gepi.20237
Roeder K, Bacanu SA, Wasserman L et al (2006) Using linkage genome scans to improve power of association in genome scans. Am J Hum Genet 78(2):243–252. https://doi.org/10.1086/500026
Rosenblat JD, Cha DS, Mansur RB et al (2014) Inflamed moods: a review of the interactions between inflammation and mood disorders. Prog Neuropsychopharmacol Biol Psychiatry 53:23–34. https://doi.org/10.1016/j.pnpbp.2014.01.013
Rubin RD, Watson PD, Duff MC et al (2014) The role of the hippocampus in flexible cognition and social behavior. Front Hum Neurosci 8:742. https://doi.org/10.3389/fnhum.2014.00742
Ruzicka WB, Subburaju S, Benes FM (2017) Variability of DNA methylation within schizophrenia risk loci across subregions of human hippocampus. Genes (Basel) 8(5). https://doi.org/10.3390/genes8050143
Sakakibara S, Nakamura Y, Satoh H et al (2001) Rna-binding protein Musashi2: developmentally regulated expression in neural precursor cells and subpopulations of neurons in mammalian CNS. J Neurosci 21(20):8091–8107. https://doi.org/10.1523/JNEUROSCI.21-20-08091.2001
Sakakibara S, Nakamura Y, Yoshida T et al (2002) RNA-binding protein Musashi family: roles for CNS stem cells and a subpopulation of ependymal cells revealed by targeted disruption and antisense ablation. Proc Natl Acad Sci U S A 99(23):15194–15199. https://doi.org/10.1073/pnas.232087499
Sawahata M, Mori D, Arioka Y et al (2020) Generation and analysis of novel reln-deleted mouse model corresponding to exonic reln deletion in schizophrenia. Psychiatry Clin Neurosci 74(5):318–327. https://doi.org/10.1111/pcn.12993
Schanzer A, Wachs FP, Wilhelm D et al (2004) Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor. Brain Pathol 14(3):237–248. https://doi.org/10.1111/j.1750-3639.2004.tb00060.x
Schmidt MJ, Mirnics K (2015) Neurodevelopment, GABA system dysfunction, and schizophrenia. Neuropsychopharmacology 40(1):190–206. https://doi.org/10.1038/npp.2014.95
Schurov IL, Handford EJ, Brandon NJ et al (2004) Expression of disrupted in schizophrenia 1 (DISC1) protein in the adult and developing mouse brain indicates its role in neurodevelopment. Mol Psychiatry 9(12):1100–1110. https://doi.org/10.1038/sj.mp.4001574
Schweiger JI, Bilek E, Schafer A et al (2019) Effects of BDNF val(66)Met genotype and schizophrenia familial risk on a neural functional network for cognitive control in humans. Neuropsychopharmacology 44(3):590–597. https://doi.org/10.1038/s41386-018-0248-9
Seyedabadi M, Fakhfouri G, Ramezani V et al (2014) The role of serotonin in memory: interactions with neurotransmitters and downstream signaling. Exp Brain Res 232(3):723–738. https://doi.org/10.1007/s00221-013-3818-4
Shcherbakova IV, Siryachenko TM, Mazaeva NA et al (2004) Leukocyte elastase and autoantibodies to nerve growth factor in the acute phase of schizophrenia and their relationship to symptomatology. World J Biol Psychiatry 5(3):143–148. https://doi.org/10.1080/15622970410029926
Shi J, Levinson DF, Duan J et al (2009) Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 460(7256):753–757. https://doi.org/10.1038/nature08192
Shi XJ, Du Y, Lei C et al (2022) Effects of brain-derived neurotrophic factor (BDNF) on the schizophrenia model of animals. J Psychiatr Res 156:538–546. https://doi.org/10.1016/j.jpsychires.2022.10.022
Shiota S, Tochigi M, Shimada H et al (2008) Association and interaction analyses of NRG1 and ERBB4 genes with schizophrenia in a japanese population. J Hum Genet 53(10):929–935. https://doi.org/10.1007/s10038-008-0332-9
Shokouhifar A, Askari N, Yazdani S et al (2019) DISC1 gene polymorphisms and the risk of schizophrenia in an Iranian population: a preliminary study. J Cell Biochem 120(2):1588–1597. https://doi.org/10.1002/jcb.27427
Shoval G, Weizman A (2005) The possible role of neurotrophins in the pathogenesis and therapy of schizophrenia. Eur Neuropsychopharmacol 15(3):319–329. https://doi.org/10.1016/j.euroneuro.2004.12.005
Shriner D, Baye TM, Padilla MA et al (2008) Commonality of functional annotation: a method for prioritization of candidate genes from genome-wide linkage studies. Nucleic Acids Res 36(4):e26. https://doi.org/10.1093/nar/gkn007
Sieghart W, Fuchs K, Tretter V et al (1999) Structure and subunit composition of GABA(A) receptors. Neurochem Int 34(5):379–385. https://doi.org/10.1016/s0197-0186(99)00045-5
Silberberg G, Darvasi A, Pinkas-Kramarski R et al (2006) The involvement of ErbB4 with schizophrenia: association and expression studies. Am J Med Genet B Neuropsychiatr Genet 141B(2):142–148. https://doi.org/10.1002/ajmg.b.30275
Singh B (2005) Recognition and optimal management of schizophrenia and related psychoses. Intern Med J 35(7):413–418. https://doi.org/10.1111/j.1445-5994.2005.00856.x
Singh SP, Singh V (2011) Meta-analysis of the efficacy of adjunctive NMDA receptor modulators in chronic schizophrenia. CNS Drugs 25(10):859–885. https://doi.org/10.2165/11586650-000000000-00000
Skibinska M, Groszewska A, Kapelski P et al (2018) Val66Met functional polymorphism and serum protein level of brain-derived neurotrophic factor (BDNF) in acute episode of schizophrenia and depression. Pharmacol Rep 70(1):55–59. https://doi.org/10.1016/j.pharep.2017.08.002
Solmi M, Radua J, Olivola M et al (2022) Age at onset of mental disorders worldwide: large-scale meta-analysis of 192 epidemiological studies. Mol Psychiatry 27(1):281–295. https://doi.org/10.1038/s41380-021-01161-7
Sozuguzel MD, Sazci A, Yildiz M (2019) Female gender specific association of the Reelin (RELN) gene rs7341475 variant with schizophrenia. Mol Biol Rep 46(3):3411–3416. https://doi.org/10.1007/s11033-019-04803-w
Stahl SM (2018) Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: dopamine, serotonin, and glutamate. CNS Spectr 23(3):187–191. https://doi.org/10.1017/S1092852918001013
Stefansson H, Sigurdsson E, Steinthorsdottir V et al (2002) Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71(4):877–892. https://doi.org/10.1086/342734
Stefansson H, Ophoff RA, Steinberg S et al (2009) Common variants conferring risk of schizophrenia. Nature 460(7256):744–747. https://doi.org/10.1038/nature08186
Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100(16):9440–9445. https://doi.org/10.1073/pnas.1530509100
Stram DO (2004) Tag SNP selection for association studies. Genet Epidemiol 27(4):365–374. https://doi.org/10.1002/gepi.20028
Su X, Qiao L, Liu Q et al (2021) Genetic polymorphisms of BDNF on cognitive functions in drug-naive first episode patients with schizophrenia. Sci Rep 11(1):20057. https://doi.org/10.1038/s41598-021-99510-7
Suchanek-Raif R, Raif P, Kowalczyk M et al (2020) An analysis of five TrkB gene polymorphisms in schizophrenia and the interaction of its haplotype with rs6265 BDNF gene polymorphism. Dis Markers 2020:4789806. https://doi.org/10.1155/2020/4789806
Sugai T, Kawamura M, Iritani S et al (2004) Prefrontal abnormality of schizophrenia revealed by DNA microarray: impact on glial and neurotrophic gene expression. Ann N Y Acad Sci 1025:84–91. https://doi.org/10.1196/annals.1316.011
Sun YV, Hu YJ (2016) Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases. Adv Genet 93:147–190. https://doi.org/10.1016/bs.adgen.2015.11.004
Szczepankiewicz A, Skibinska M, Czerski PM et al (2005) No association of the brain-derived neurotrophic factor (BDNF) gene C-270T polymorphism with schizophrenia. Schizophr Res 76(2–3):187–193. https://doi.org/10.1016/j.schres.2005.02.006
Szeszko PR, Lipsky R, Mentschel C et al (2005) Brain-derived neurotrophic factor val66met polymorphism and volume of the hippocampal formation. Mol Psychiatry 10(7):631–636. https://doi.org/10.1038/sj.mp.4001656
Takahashi M, Shirakawa O, Toyooka K et al (2000) Abnormal expression of brain-derived neurotrophic factor and its receptor in the corticolimbic system of schizophrenic patients. Mol Psychiatry 5(3):293–300. https://doi.org/10.1038/sj.mp.4000718
Tam V, Patel N, Turcotte M et al (2019) Benefits and limitations of genome-wide association studies. Nat Rev Genet 20(8):467–484. https://doi.org/10.1038/s41576-019-0127-1
Tandon R, Keshavan MS, Nasrallah HA (2008) Schizophrenia, “Just the Facts”: what we know in 2008 part 1: overview. Schizophr Res 100(1–3):4–19. https://doi.org/10.1016/j.schres.2008.01.022
Tandon R, Nasrallah HA, Keshavan MS (2009) Schizophrenia, “just the facts” 4. Clinical features and conceptualization. Schizophr Res 110(1–3):1–23. https://doi.org/10.1016/j.schres.2009.03.005
Thomson PA, Wray NR, Millar JK et al (2005) Association between the TRAX/DISC locus and both bipolar disorder and schizophrenia in the scottish population. Mol Psychiatry 10(7):657–668. https://doi.org/10.1038/sj.mp.4001669
Tochigi M, Otowa T, Suga M et al (2006) No evidence for an association between the BDNF Val66Met polymorphism and schizophrenia or personality traits. Schizophr Res 87(1–3):45–47. https://doi.org/10.1016/j.schres.2006.06.029
Tremolizzo L, Carboni G, Ruzicka WB et al (2002) An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc Natl Acad Sci U S A 99(26):17095–17100. https://doi.org/10.1073/pnas.262658999
Tso IF, Fang Y, Phan KL et al (2015) Abnormal GABAergic function and face processing in schizophrenia: a pharmacologic-fMRI study. Schizophr Res 168(1–2):338–344. https://doi.org/10.1016/j.schres.2015.08.022
Uno Y, Coyle JT (2019) Glutamate hypothesis in schizophrenia. Psychiatry Clin Neurosci 73(5):204–215. https://doi.org/10.1111/pcn.12823
Urban N, Abi-Dargham A (2010) Neurochemical imaging in schizophrenia. Curr Top Behav Neurosci 4:215–242. https://doi.org/10.1007/7854_2010_37
van Os J, Kapur S (2009) Schizophrenia Lancet 374(9690):635–645. https://doi.org/10.1016/S0140-6736(09)60995-8
Vilchez-Acosta A, Manso Y, Cardenas A et al (2022) Specific contribution of Reelin expressed by Cajal-Retzius cells or GABAergic interneurons to cortical lamination. Proc Natl Acad Sci U S A 119(37):e2120079119. https://doi.org/10.1073/pnas.2120079119
Wang HY, Liu Y, Yan JW et al (2018) Gene polymorphisms of DISC1 is associated with schizophrenia: evidence from a meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 81:64–73. https://doi.org/10.1016/j.pnpbp.2017.10.008
Watson CG, Kucala T, Tilleskjor C et al (1984) Schizophrenic birth seasonality in relation to the incidence of infectious diseases and temperature extremes. Arch Gen Psychiatry 41(1):85–90. https://doi.org/10.1001/archpsyc.1984.01790120089011
Wehr MC, Hinrichs W, Brzozka MM et al (2017) Spironolactone is an antagonist of NRG1-ERBB4 signaling and schizophrenia-relevant endophenotypes in mice. EMBO Mol Med 9(10):1448–1462. https://doi.org/10.15252/emmm.201707691
Weir BS, Anderson AD, Hepler AB (2006) Genetic relatedness analysis: modern data and new challenges. Nat Rev Genet 7(10):771–780. https://doi.org/10.1038/nrg1960
Wellcome Trust Case Control C (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447(7145):661–678. https://doi.org/10.1038/nature05911
Wen Z, Chen J, Khan RA et al (2016) Genetic association between NRG1 and schizophrenia, major depressive disorder, bipolar disorder in Han Chinese population. Am J Med Genet B Neuropsychiatr Genet 171B(3):468–478. https://doi.org/10.1002/ajmg.b.32428
Wilkening S, Chen B, Bermejo JL et al (2009) Is there still a need for candidate gene approaches in the era of genome-wide association studies? Genomics 93(5):415–419. https://doi.org/10.1016/j.ygeno.2008.12.011
Witte JS (2010) Genome-wide association studies and beyond. Annu Rev Public Health 31:9–20. https://doi.org/10.1146/annurev.publhealth.012809.103723. (24 p following 20)
Wu Q, Li Y, Xiao B (2013) DISC1-related signaling pathways in adult neurogenesis of the hippocampus. Gene 518(2):223–230. https://doi.org/10.1016/j.gene.2013.01.015
Xu H, Wang J, Zhou Y et al (2021) BDNF affects the mediating effect of negative symptoms on the relationship between age of onset and cognition in patients with chronic schizophrenia. Psychoneuroendocrinology 125:105121. https://doi.org/10.1016/j.psyneuen.2020.105121
Yang AC, Tsai SJ (2017) New targets for schizophrenia treatment beyond the dopamine hypothesis. Int J Mol Sci 18(8). https://doi.org/10.3390/ijms18081689
Yang J, Kang C, Wu C et al (2021) Pharmacogenetic associations of NRG1 polymorphisms with neurocognitive performance and clinical symptom response to risperidone in the untreated schizophrenia. Schizophr Res 231:67–69. https://doi.org/10.1016/j.schres.2021.03.001
Yin J, Lu Y, Yu S et al (2020) Exploring the mRNA expression level of RELN in peripheral blood of schizophrenia patients before and after antipsychotic treatment. Hereditas 157(1):43. https://doi.org/10.1186/s41065-020-00158-6
Yoon JH, Maddock RJ, DongBo Cui E et al (2020) Reduced in vivo visual cortex GABA in schizophrenia, a replication in a recent onset sample. Schizophr Res 215:217–222. https://doi.org/10.1016/j.schres.2019.10.025
Yue WH, Wang HF, Sun LD et al (2011) Genome-wide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p11.2. Nat Genet 43(12):1228–1231. https://doi.org/10.1038/ng.979
Zhang F, Sarginson J, Crombie C et al (2006) Genetic association between schizophrenia and the DISC1 gene in the scottish population. Am J Med Genet B Neuropsychiatr Genet 141B(2):155–159. https://doi.org/10.1002/ajmg.b.30274
Zhang Y, Lu T, Yan H et al (2013) Replication of association between schizophrenia and chromosome 6p21-6p22.1 polymorphisms in Chinese Han population. PLoS ONE 8(2):e56732. https://doi.org/10.1371/journal.pone.0056732
Zhang XY, Chen da C, Tan YL et al (2016) BDNF polymorphisms are associated with cognitive performance in schizophrenia patients versus healthy controls. J Clin Psychiatry 77(8):e1011-1018. https://doi.org/10.4088/JCP.15m10269
Zheng F, Wang L, Jia M et al (2011) Evidence for association between disrupted-in-Schizophrenia 1 (DISC1) gene polymorphisms and autism in Chinese Han population: a family-based association study. Behav Brain Funct 7:14. https://doi.org/10.1186/1744-9081-7-14
Zhou J, Zhou D, Yan T et al (2022) Association between CpG island DNA methylation in the promoter region of RELN and positive and negative types of schizophrenia. J Int Med Res 50(5):3000605221100345. https://doi.org/10.1177/03000605221100345
Funding
This work was supported by Natural Science Foundation of Liaoning Province, China (2022-MS-326 to Z-L. L. and 2021BS-294 to B. W.), and Dengfeng project of Dalian medical discipline priority (2022ZZ258 to B. W.). We are also grateful for the support from Liaoning BaiQianWan Talents Program.
Author information
Authors and Affiliations
Contributions
Y. L. and L. W. retrieved literature and prepared the initial version of the manuscript. W-J. H., C. D., P. G., Y-N. B., B-W. S. and Z-Y. M retrieved literature and prepared the tables. H-W. R. edited the initial version of the manuscript, B. W. provided suggestions to improve the manuscript. Y-Y. L., C-J. L. and Z-X. X. retrieved literature. Z-L. L. conceptualized the manuscript and prepared the final version of the manuscript. All authors contributed to the article and approved the submitted version.
Corresponding authors
Ethics declarations
Ethics approval
Not applicable.
Consent to participate
All authors of the article consent to participate.
Consent for publication
All authors declare that they consent for publication.
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Lv, Y., Wen, L., Hu, WJ. et al. Schizophrenia in the genetic era: a review from development history, clinical features and genomic research approaches to insights of susceptibility genes. Metab Brain Dis 39, 147–171 (2024). https://doi.org/10.1007/s11011-023-01271-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11011-023-01271-x