iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s10957-020-01725-7
Inexact Proximal Point Methods for Multiobjective Quasiconvex Minimization on Hadamard Manifolds | Journal of Optimization Theory and Applications Skip to main content
Log in

Inexact Proximal Point Methods for Multiobjective Quasiconvex Minimization on Hadamard Manifolds

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we present two inexact scalarization proximal point methods to solve quasiconvex multiobjective minimization problems on Hadamard manifolds. Under standard assumptions on the problem, we prove that the two sequences generated by the algorithms converge to a Pareto critical point of the problem and, for the convex case, the sequences converge to a weak Pareto solution. Finally, we explore an application of the method to demand theory in economy, which can be dealt with using the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ehrgot, M.: Multicriteria Optimization, 2nd edn. Springer, Berlin (2005)

    Google Scholar 

  2. Miettinen, K.: Nonlinear Multiobjective Optimization. Springer, Berlin (1998)

    MATH  Google Scholar 

  3. Graziano, M.G.: Fuzzy cooperative behavior in response to market imperfections. Int. J. Intell. Syst. 27, 108–131 (2012)

    Google Scholar 

  4. Graziano, M.G., Romaniello, M.: Linear cost share equilibria and the veto power of the grand coalition. Soc. Choice Welf. 38, 269–303 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Fliege, J.: An efficient interior-point method for convex multicriteria optimization problems. Math. Oper. Res. 31, 825–845 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Graña Drummond, L.M., Iusem, A.N.: A projected gradient method for vector optimization problems. Comput. Optim. Appl. 28, 5–30 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math. Methods Oper. Res. 51, 479–494 (2000)

    MathSciNet  MATH  Google Scholar 

  8. Gregório, R., Oliveira, P.R.: A logarithmic-quadratic proximal point scalarization method for multiobjective programming. J. Glob. Optim. 49(2), 281–291 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Rocha, R.A., Oliveira, P.R., Gregório, R.M., Souza, M.: Logarithmic quasi-distance proximal point scalarization method for multi-objective programming. Appl. Math. Comput. 273, 856–867 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Custódio, A.L., Aguilar Madeira, J.F., Vaz, A.I.F., Vicente, L.N.: Direct multisearch for multiobjective optimization. SIAM J. Optim. 21(3), 1109–1140 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)

    MathSciNet  MATH  Google Scholar 

  12. Bonnel, H., Iusem, A.N., Svaiter, B.F.: Proximal methods in vector optimization. SIAM J. Optim. 15(4), 953–970 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Ceng, L.C., Yao, J.C.: Approximate proximal methods in vector optimization. Eur. J. Oper. Res. 183, 1–19 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Apolinario, H.C.F., Papa Quiroz, E.A., Oliveira, P.R.: A scalarization proximal point method for quasiconvex multiobjective minimization. J. Global Optim. 64(1), 79–96 (2016)

    MathSciNet  MATH  Google Scholar 

  15. da Cruz Neto, J.X., da Silva, G.J.P., Ferreira, O.P., Lopes, J.O.: A subgradient method for multiobjective optimization. Comput. Optim. Appl. 54(3), 461–472 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Bello Cruz, J.Y., Lucambio Pérez, L.R., Melo, J.G.: Convergence of the projected gradient method for quasiconvex multiobjective optimization. Nonlinear Anal. Theory Methods Appl. 74(16), 5268–5273 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Li, H.L., Yu, C.S.: Solving multiple objective quasiconvex goal programming problems by linear programming. Int. Trans. Oper. Res. 7(3), 265–284 (2000)

    MathSciNet  Google Scholar 

  18. do Carmo, M.P.: Riemannian Geometry. Bikhausen, Boston (1992)

    MATH  Google Scholar 

  19. Udriste, C.: Convex Function and Optimization Methods on Riemannian Manifolds. Kluwer Academic Publishers, Berlin (1994)

    MATH  Google Scholar 

  20. Sakai, T.: Riemannian Geometry. American Mathematical Society, Providence (1996)

    MATH  Google Scholar 

  21. Rapcsák, T.: Smooth Nonlinear Optimization in \(\mathbb{R}^n\). Kluwer Academic Publishers, Berlin (1997)

    MATH  Google Scholar 

  22. Bento, G.C., Barbosa, S.D., Da Cruz Neto, X.J., Oliveira, P.R., Souza, J.C.: Computing Riemannian center of mass on Hadamard manifolds. J. Optim. Theory Appl. 183, 977–992 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Nesterov, Y.E., Todd, M.J.: On the Riemannian geometry defined by concordant barrier and interior-point methods. Found. Comput. Math. 2, 333–361 (2002)

    MathSciNet  MATH  Google Scholar 

  24. Rothaus, O.S.: Domains of Positivity. Abh. Math. Sem. Univ. Hamburg 24, 189–235 (1960)

    MathSciNet  MATH  Google Scholar 

  25. Papa Quiroz, E.A., Oliveira, P.R.: Full convergence of the proximal point method for quasiconvex function on Hadamard manifolds, ESAIM: Control. Optim. Calculus Variations 18(2), 483–500 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Papa Quiroz, E.A., Oliveira, P.R.: New results on linear optimization through diagonal metrics and riemannian geometry tools, technical report, ES-645/04. Federal University of Rio de Janeiro, Pesc Coppe (2004)

    Google Scholar 

  27. Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Unconstrained steepest descent method for multicriteria optimization on Riemannian manifolds. J. Optim. Theory Appl. 154(1), 88–107 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Bento, G.C., Cruz Neto, J.X.: A subgradient method for multiobjective optimization on Riemannian manifolds. J. Optim. Theory Appl. 159(1), 125–137 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Bento, G.C., Cruz Neto, J.X., Santos, P.S.M.: An inexact steepest descent method for multicriteria optimization on Riemannian manifolds. J. Optim. Theory Appl. 159, 108–124 (2013)

    MathSciNet  MATH  Google Scholar 

  30. Bento, G.C., Cruz Neto, J.X., Meireles, L.: Proximal point method for locally Lipschitz fumction in multiobjective optimization of Hadamard manifolds. J. Optim. Theory Appl. 179, 37–52 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Baygorrea, N., Papa Quiroz, E.A., Maculan, N.: Inexact proximal point methods for quasiconvex minimization on Hadamard manifolds. J. Oper. Res. Soc. China 4(4), 397–424 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Baygorrea, N., Papa Quiroz, E.A., Maculan, N.: On the convergence rate of an inexact proximal point algorithm for quasiconvex minimization on Hadamard manifolds. J. Oper. Res. Soc. China 5(4), 457–467 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Papa Quiroz, E.A., Baygorrea, N., Maculan, N.: Clarke Subdifferential, Pareto-Clarke critical points and descent directions to multiobjective optimization on Hadamard manifolds Submitted

  34. da Cruz Neto, J.X., de Lima, L.L., Oliveira, P.R.: Geodesic algorithms in Riemannian geometry. Balkan J. Geometry Appl. 3(2), 89–100 (1998)

    MathSciNet  MATH  Google Scholar 

  35. Ferreira, O.P., Oliveira, P.R.: Proximal point algorithm on Riemannian manifolds. Optimization 51(2), 257–270 (2002)

    MathSciNet  MATH  Google Scholar 

  36. Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds. Nonlinear Anal. Theory Methods Appl. 73(2), 564–572 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Huang, X.X., Yang, X.Q.: Duality for multiobjective optimization via nonlinear Lagrangian functions. J. Optim. Theory Appl. 120(1), 111–127 (2004)

    MathSciNet  MATH  Google Scholar 

  38. Villacorta, K.D.V., Oliveira, P.R.: An interior proximal method in vector optimization. Eur. J. Oper. Res. 214, 485–492 (2011)

    MathSciNet  MATH  Google Scholar 

  39. Papa Quiroz, E.A., Oliveira, P.R.: Proximal point methods for minimizing quasiconvex locally lipschitz functions on Hadamard manifolds. Nonlinnear Anal. 75(15), 5924–5932 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Tang, G.J., Huang, N.J.: An inexact proximal point algorithm for maximal monotone vector fields on Hadamard manifolds. Oper. Res. Lett. 6(41), 586–591 (2013)

    MathSciNet  MATH  Google Scholar 

  41. Polyak, B.: Introduction to optimization Translations Series in Mathematics and Engineering. Springer, New York (1987)

    Google Scholar 

  42. Papa Quiroz, E.A., Oliveira, P.R.: Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifolds. J. Convex Anal. 16(1), 49–69 (2009)

    MathSciNet  MATH  Google Scholar 

  43. Lang, S.: Fundamentals of Differential Geometry: Graduate Text in Mathematics 191. Springer, Berlin (1998)

    Google Scholar 

  44. Attouch, H., Soubeyran, A.: Local search proximal algorithms as decision dynamics with costs to move. Set-valued Var. Anal. 19(1), 157–177 (2011)

    MathSciNet  MATH  Google Scholar 

  45. Tang, F.M., Huang, P.L.: On the convergence rate of a proximal point algorithm for vector functions on Hadamard manifolds. J. Oper. Res. Soc. China 5(3), 405–417 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Alex Papa Quiroz.

Additional information

Communicated by Alexandru Kristály.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papa Quiroz, E.A., Baygorrea Cusihuallpa, N. & Maculan, N. Inexact Proximal Point Methods for Multiobjective Quasiconvex Minimization on Hadamard Manifolds. J Optim Theory Appl 186, 879–898 (2020). https://doi.org/10.1007/s10957-020-01725-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01725-7

Keywords

Mathematics Subject Classification

Navigation