Abstract
Cloud computing heavily relies on virtualization, as with cloud computing virtual resources are typically leased to the consumer, for example as virtual machines. Efficient management of these virtual resources is of great importance, as it has a direct impact on both the scalability and the operational costs of the cloud environment. Recently, containers are gaining popularity as virtualization technology, due to the minimal overhead compared to traditional virtual machines and the offered portability. Traditional resource management strategies however are typically designed for the allocation and migration of virtual machines, so the question arises how these strategies can be adapted for the management of a containerized cloud. Apart from this, the cloud is also no longer limited to the centrally hosted data center infrastructure. New deployment models have gained maturity, such as fog and mobile edge computing, bringing the cloud closer to the end user. These models could also benefit from container technology, as the newly introduced devices often have limited hardware resources. In this survey, we provide an overview of the current state of the art regarding resource management within the broad sense of cloud computing, complementary to existing surveys in literature. We investigate how research is adapting to the recent evolutions within the cloud, being the adoption of container technology and the introduction of the fog computing conceptual model. Furthermore, we identify several challenges and possible opportunities for future research.
Similar content being viewed by others
References
Swift—openstack. https://wiki.openstack.org/wiki/Swift. Accessed 9 Sept 2019
Openstack—build the future of open infrastructure. http://openstack.org. Accessed 9 Sept 2019
Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R.H., Morrow, M.J., Polakos, P.A.: A comprehensive survey on fog computing: state-of-the-art and research challenges. IEEE Commun. Surv. Tutor. 20(1), 416–464 (2018). https://doi.org/10.1109/COMST.2017.2771153
Yi, S., Li, C., Li, Q.: A survey of fog computing: concepts, applications and issues. In: Proceedings of the 2015 Workshop on Mobile Big Data, Mobidata ’15, pp. 37–42. ACM, New York (2015). https://doi.org/10.1145/2757384.2757397
Pahl, C., Brogi, A., Soldani, J., Jamshidi, P.: Cloud container technologies: a state-of-the-art review. In: IEEE Transactions on Cloud Computing, pp. 1–1 (2018). https://doi.org/10.1109/TCC.2017.2702586
Rodriguez, M.A., Buyya, R.: Container-based cluster orchestration systems: a taxonomy and future directions. Softw. Pract. Exp. (2018). https://doi.org/10.1002/spe.2660
Bittencourt, L.F., Goldman, A., Madeira, E.R., da Fonseca, N.L., Sakellariou, R.: Scheduling in distributed systems: a cloud computing perspective. Comput. Sci. Rev. 30, 31–54 (2018). https://doi.org/10.1016/j.cosrev.2018.08.002
Herrera, J.G., Botero, J.F.: Resource allocation in NFV: a comprehensive survey. IEEE Trans. Netw. Serv. Manag. 13(3), 518–532 (2016). https://doi.org/10.1109/TNSM.2016.2598420
Jennings, B., Stadler, R.: Resource management in clouds: survey and research challenges. IEEE Trans. Netw. Serv. Manag. 23(3), 567–619 (2015). https://doi.org/10.1007/s10922-014-9307-7
Kumar, D., Baranwal, G., Raza, Z., Vidyarthi, D.P.: A survey on spot pricing in cloud computing. J. Netw. Syst. Manag. 26(4), 809–856 (2018). https://doi.org/10.1007/s10922-017-9444-x
Mann, Z.A.: Allocation of virtual machines in cloud data centers—a survey of problem models and optimization algorithms. ACM Comput. Surv. 48(1), 11:1–11:34 (2015). https://doi.org/10.1145/2797211
Masdari, M., Salehi, F., Jalali, M., Bidaki, M.: A survey of PSO-based scheduling algorithms in cloud computing. J. Netw. Syst. Manag. 25(1), 122–158 (2017). https://doi.org/10.1007/s10922-016-9385-9
Poullie, P., Bocek, T., Stiller, B.: A survey of the state-of-the-art in fair multi-resource allocations for data centers. IEEE Trans. Netw. Serv. Manag. 15(1), 169–183 (2018). https://doi.org/10.1109/TNSM.2017.2743066
Yousafzai, A., Gani, A., Noor, R.M., Sookhak, M., Talebian, H., Shiraz, M., Khan, M.K.: Cloud resource allocation schemes: review, taxonomy, and opportunities. Knowl. Inf. Syst. 50(2), 347–381 (2017). https://doi.org/10.1007/s10115-016-0951-y
Zhan, Z.H., Liu, X.F., Gong, Y.J., Zhang, J., Chung, H.S.H., Li, Y.: Cloud computing resource scheduling and a survey of its evolutionary approaches. ACM Comput. Surv. 47(4), 63:1–63:33 (2015). https://doi.org/10.1145/2788397
Mell, P., Grance, T.: Sp 800-145. The NIST definition of cloud computing. Technical report (2011)
Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. Commun. ACM 53(4), 50–58 (2010). https://doi.org/10.1145/1721654.1721672
Garcia Lopez, P., Montresor, A., Epema, D., Datta, A., Higashino, T., Iamnitchi, A., Barcellos, M., Felber, P., Riviere, E.: Edge-centric computing: vision and challenges. SIGCOMM Comput. Commun. Rev. 45(5), 37–42 (2015). https://doi.org/10.1145/2831347.2831354
Hong, H.: From cloud computing to FOG computing: unleash the power of edge and end devices. In: 2017 IEEE International Conference on Cloud Computing Technology and Science (CloudCom), pp. 331–334 (2017). https://doi.org/10.1109/CloudCom.2017.53
Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, MCC ’12, pp. 13–16. ACM, New York (2012). https://doi.org/10.1145/2342509.2342513
Iorga, M., Feldman, L.B., Barton, R., Martin, M., Goren, N.S., Mahmoudi, C.: Sp 500-325. Fog computing conceptual model. Technical report (2018)
Dolui, K., Datta, S.K.: Comparison of edge computing implementations: Fog computing, cloudlet and mobile edge computing. In: 2017 Global Internet of Things Summit (GIoTS), pp. 1–6 (2017). https://doi.org/10.1109/GIOTS.2017.8016213
Haouari, F., Faraj, R., AlJa’am, J.M.: Fog computing potentials, applications, and challenges. In: 2018 International Conference on Computer and Applications (ICCA), pp. 399–406 (2018). https://doi.org/10.1109/COMAPP.2018.8460182
Santos, J., Wauters, T., Volckaert, B., De Turck, F.: Fog computing: enabling the management and orchestration of smart city applications in 5G networks. Entropy (2018). https://doi.org/10.3390/e20010004
Sarkar, S., Chatterjee, S., Misra, S.: Assessment of the suitability of fog computing in the context of internet of things. IEEE Trans. Cloud Comput. 6(1), 46–59 (2018). https://doi.org/10.1109/TCC.2015.2485206
Yao, J., Ansari, N.: Qos-aware fog resource provisioning and mobile device power control in IOT networks. IEEE Trans. Netw. Serv. Manag. 16(1), 1 (2018). https://doi.org/10.1109/TNSM.2018.2888481
Adufu, T., Choi, J., Kim, Y.: Is container-based technology a winner for high performance scientific applications? In: 2015 17th Asia-Pacific Network Operations and Management Symposium (APNOMS), pp. 507–510 (2015). https://doi.org/10.1109/APNOMS.2015.7275379
Eberbach, E., Reuter, A.: Toward El Dorado for cloud computing: lightweight VMs, containers, meta-containers and oracles. In: Proceedings of the 2015 European Conference on Software Architecture Workshops, ECSAW ’15, pp. 13:1–13:7. ACM, New York (2015). https://doi.org/10.1145/2797433.2797446
Sharma, P., Chaufournier, L., Shenoy, P., Tay, Y.C.: Containers and virtual machines at scale: A comparative study. In: Proceedings of the 17th International Middleware Conference, Middleware ’16, pp. 1:1–1:13. ACM, New York (2016). https://doi.org/10.1145/2988336.2988337
Tesfatsion, S.K., Klein, C., Tordsson, J.: Virtualization techniques compared: performance, resource, and power usage overheads in clouds. In: Proceedings of the 2018 ACM/SPEC International Conference on Performance Engineering, ICPE ’18, pp. 145–156. ACM, New York (2018). https://doi.org/10.1145/3184407.3184414
Linux containers. https://linuxcontainers.org. Accessed 9 Sept 2019
Docker—enterprise container platform. https://www.docker.com. Accessed 9 Sept 2019
Docker–docker hub. https://www.docker.com/products/docker-hub. Accessed 9 Sept 2019
Kubernetes—production-grade container orchestration. https://kubernetes.io. Accessed 9 Sept 2019
Docker—swarm mode overview. https://docs.docker.com/engine/swarm/. Accessed 9 Sept 2019
Docker blog—extending docker enterprise edition to support kubernetes. https://blog.docker.com/2017/10/docker-enterprise-edition-kubernetes/. Accessed 9 Sept 2019
Reniers, V.: The prospects for multi-cloud deployment of SaaS applications with container orchestration platforms. In: Proceedings of the Doctoral Symposium of the 17th International Middleware Conference, Middleware Doctoral Symposium’16, pp. 5:1–5:2. ACM, New York (2016). https://doi.org/10.1145/3009925.3009930
Zhang, F., Liu, G., Fu, X., Yahyapour, R.: A survey on virtual machine migration: challenges, techniques, and open issues. IEEE Commun. Surv. Tutor. 20(2), 1206–1243 (2018). https://doi.org/10.1109/COMST.2018.2794881
Stoyanov, R., Kollingbaum, M.J.: Efficient live migration of Linux containers. In: Yokota, R., Weiland, M., Shalf, J., Alam, S. (eds.) High Performance Computing, pp. 184–193. Springer International Publishing, Cham (2018)
CRIU—checkpoint/restore in userspace. https://criu.org. Accessed 9 Sept 2019
Govindaraj, K., Artemenko, A.: Container live migration for latency critical industrial applications on edge computing. In: 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), vol. 1, pp. 83–90. (2018). https://doi.org/10.1109/ETFA.2018.8502659
Mattetti, M., Shulman-Peleg, A., Allouche, Y., Corradi, A., Dolev, S., Foschini, L.: Securing the infrastructure and the workloads of Linux containers. In: 2015 IEEE Conference on Communications and Network Security (CNS), pp. 559–567 (2015). https://doi.org/10.1109/CNS.2015.7346869
Young, E.G., Zhu, P., Caraza-Harter, T., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: The true cost of containing: a gvisor case study. In: 11th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 19). USENIX Association, Renton (2019). https://www.usenix.org/conference/hotcloud19/presentation/young
Bui, T.: Analysis of Docker Security. arXiv e-prints (2015)
Prakash, C., Prashanth, P., Bellur, U., Kulkarni, P.: Deterministic container resource management in derivative clouds. In: 2018 IEEE International Conference on Cloud Engineering (IC2E), pp. 79–89 (2018). https://doi.org/10.1109/IC2E.2018.00030
Wolke, A., Bichler, M., Setzer, T.: Planning vs. dynamic control: resource allocation in corporate clouds. IEEE Trans. Cloud Comput. 4(3), 322–335 (2016). https://doi.org/10.1109/TCC.2014.2360399
Chi, Y., Li, X., Wang, X., Leung, V.C.M., Shami, A.: A fairness-aware pricing methodology for revenue enhancement in service cloud infrastructure. IEEE Syst. J. 11(2), 1006–1017 (2017). https://doi.org/10.1109/JSYST.2015.2448719
Mashayekhy, L., Nejad, M.M., Grosu, D.: Physical machine resource management in clouds: a mechanism design approach. IEEE Trans. Cloud Comput. 3(3), 247–260 (2015). https://doi.org/10.1109/TCC.2014.2369419
Mashayekhy, L., Nejad, M.M., Grosu, D., Vasilakos, A.V.: An online mechanism for resource allocation and pricing in clouds. IEEE Trans. Comput. 65(4), 1172–1184 (2016). https://doi.org/10.1109/TC.2015.2444843
Mikavica, B., Kostić-Ljubisavljević, A.: Pricing and bidding strategies for cloud spot block instances. In: 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 0384–0389 (2018). https://doi.org/10.23919/MIPRO.2018.8400073
Weinman, J.: Cloud pricing and markets. IEEE Cloud Comput. 2(1), 10–13 (2015). https://doi.org/10.1109/MCC.2015.3
ACM Transactions on Internet Technology (TOIT). https://dl.acm.org/citation.cfm?id=J780. Accessed 9 Sept 2019
IEEE transactions on cloud computing (tcc). https://www.computer.org/csdl/journal/cc. Accessed 9 Sept 2019
IEEE transactions on parallel and distributed systems (TPDS). https://www.computer.org/csdl/journal/td. Accessed 9 Sept 2019
IEEE transactions on network and service management (TNSM). https://www.comsoc.org/publications/journals/ieee-tnsm. Accessed 9 Sept 2019
Springer journal of network and systems management (jnsm). https://www.springer.com/computer/communication+networks/journal/10922. Accessed 9 Sept 2019
Wiley journal of software: practice and experience (spe). https://onlinelibrary.wiley.com/journal/1097024x. Accessed 9 Sept 2019
Aazam, M., Huh, E.: Fog computing micro datacenter based dynamic resource estimation and pricing model for iot. In: 2015 IEEE 29th International Conference on Advanced Information Networking and Applications, pp. 687–694 (2015). https://doi.org/10.1109/AINA.2015.254
Abdelbaky, M., Diaz-Montes, J., Parashar, M., Unuvar, M., Steinder, M.: Docker containers across multiple clouds and data centers. In: 2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC), pp. 368–371 (2015)
Amannejad, Y., Krishnamurthy, D., Far, B.: Managing performance interference in cloud-based web services. IEEE Trans. Netw. Serv. Manag. 12(3), 320–333 (2015). https://doi.org/10.1109/TNSM.2015.2456172
Chiang, Y., Ouyang, Y., Hsu, C.: An efficient green control algorithm in cloud computing for cost optimization. IEEE Trans. Cloud Comput. 3(2), 145–155 (2015). https://doi.org/10.1109/TCC.2014.2350492
Dabbagh, M., Hamdaoui, B., Guizani, M., Rayes, A.: Energy-efficient resource allocation and provisioning framework for cloud data centers. IEEE Trans. Netw. Serv. Manag. 12(3), 377–391 (2015). https://doi.org/10.1109/TNSM.2015.2436408
Dhakate, S., Godbole, A.: Distributed cloud monitoring using docker as next generation container virtualization technology. In: 2015 Annual IEEE India Conference (INDICON), pp. 1–5 (2015). https://doi.org/10.1109/INDICON.2015.7443771
Huang, X., Yu, R., Kang, J., Ding, J., Maharjan, S., Gjessing, S., Zhang, Y.: Dynamic resource pricing and scalable cooperation for mobile cloud computing. In: 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom), pp. 786–792 (2015). https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.155
Jin, H., Wang, X., Wu, S., Di, S., Shi, X.: Towards optimized fine-grained pricing of IaaS cloud platform. IEEE Trans. Cloud Comput. 3(4), 436–448 (2015). https://doi.org/10.1109/TCC.2014.2344680
Katsalis, K., Paschos, G.S., Viniotis, Y., Tassiulas, L.: Cpu provisioning algorithms for service differentiation in cloud-based environments. IEEE Trans. Netw. Serv. Manag. 12(1), 61–74 (2015). https://doi.org/10.1109/TNSM.2015.2397345
Kumbhare, A.G., Simmhan, Y., Frincu, M., Prasanna, V.K.: Reactive resource provisioning heuristics for dynamic dataflows on cloud infrastructure. IEEE Trans. Cloud Comput. 3(2), 105–118 (2015). https://doi.org/10.1109/TCC.2015.2394316
Lee, Y.C., Kim, Y., Han, H., Kang, S.: Fine-grained, adaptive resource sharing for real pay-per-use pricing in clouds. In: 2015 International Conference on Cloud and Autonomic Computing, pp. 236–243 (2015). https://doi.org/10.1109/ICCAC.2015.36
Li, W., Kanso, A.: Comparing containers versus virtual machines for achieving high availability. In: 2015 IEEE International Conference on Cloud Engineering, pp. 353–358 (2015). https://doi.org/10.1109/IC2E.2015.79
Liu, J., Zhang, Y., Zhou, Y., Zhang, D., Liu, H.: Aggressive resource provisioning for ensuring qos in virtualized environments. IEEE Trans. Cloud Comput. 3(2), 119–131 (2015). https://doi.org/10.1109/TCC.2014.2353045
Moens, H., Dhoedt, B., Turck, F.D.: Allocating resources for customizable multi-tenant applications in clouds using dynamic feature placement. Future Gener. Comput. Syst. 53, 63–76 (2015). https://doi.org/10.1016/j.future.2015.05.017
Mukherjee, J., Krishnamurthy, D., Rolia, J.: Resource contention detection in virtualized environments. IEEE Trans. Netw. Serv. Manag. 12(2), 217–231 (2015). https://doi.org/10.1109/TNSM.2015.2407273
Petri, I., Diaz-Montes, J., Zou, M., Beach, T., Rana, O., Parashar, M.: Market models for federated clouds. IEEE Trans. Cloud Comput. 3(3), 398–410 (2015). https://doi.org/10.1109/TCC.2015.2415792
Sharma, B., Thulasiram, R.K., Thulasiraman, P., Buyya, R.: Clabacus: a risk-adjusted cloud resources pricing model using financial option theory. IEEE Trans. Cloud Comput. 3(3), 332–344 (2015). https://doi.org/10.1109/TCC.2014.2382099
Stankovski, V., Taherizadeh, S., Taylor, I., Jones, A., Mastroianni, C., Becker, B., Suhartanto, H.: Towards an environment supporting resilience, high-availability, reproducibility and reliability for cloud applications. In: 2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC), pp. 383–386 (2015). https://doi.org/10.1109/UCC.2015.61
Wang, X., Wang, X., Che, H., Li, K., Huang, M., Gao, C.: An intelligent economic approach for dynamic resource allocation in cloud services. IEEE Trans. Cloud Comput. 3(3), 275–289 (2015). https://doi.org/10.1109/TCC.2015.2415776
Wuhib, F., Yanggratoke, R., Stadler, R.: Allocating compute and network resources under management objectives in large-scale clouds. J. Netw. Syst. Manag. 23(1), 111–136 (2015). https://doi.org/10.1007/s10922-013-9280-6
Zhang, Q., Li, S., Li, Z., Xing, Y., Yang, Z., Dai, Y.: Charm: a cost-efficient multi-cloud data hosting scheme with high availability. IEEE Trans. Cloud Comput. 3(3), 372–386 (2015). https://doi.org/10.1109/TCC.2015.2417534
Aazam, M., Huh, E., St-Hilaire, M., Lung, C., Lambadaris, I.: Cloud customer’s historical record based resource pricing. IEEE Trans. Parallel Distrib. Syst. 27(7), 1929–1940 (2016). https://doi.org/10.1109/TPDS.2015.2473850
Ayoubi, S., Zhang, Y., Assi, C.: A reliable embedding framework for elastic virtualized services in the cloud. IEEE Trans. Netw. Serv. Manag. 13(3), 489–503 (2016). https://doi.org/10.1109/TNSM.2016.2581484
Choi, S., Myung, R., Choi, H., Chung, K., Gil, J., Yu, H.: GPSF: General-purpose scheduling framework for container based on cloud environment. In: 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 769–772 (2016). https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2016.162
Da Cunha Rodrigues, G., Calheiros, R.N., Guimaraes, V.T., Santos, G.L.d., de Carvalho, M.B., Granville, L.Z., Tarouco, L.M.R., Buyya, R.: Monitoring of cloud computing environments: concepts, solutions, trends, and future directions. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing, SAC ’16, pp. 378–383. ACM, New York (2016). https://doi.org/10.1145/2851613.2851619
Dai, X., Wang, J.M., Bensaou, B.: Energy-efficient virtual machines scheduling in multi-tenant data centers. IEEE Trans. Cloud Comput. 4(2), 210–221 (2016). https://doi.org/10.1109/TCC.2015.2481401
Elgazzar, K., Martin, P., Hassanein, H.S.: Cloud-assisted computation offloading to support mobile services. IEEE Trans. Cloud Comput. 4(3), 279–292 (2016). https://doi.org/10.1109/TCC.2014.2350471
Espling, D., Larsson, L., Li, W., Tordsson, J., Elmroth, E.: Modeling and placement of cloud services with internal structure. IEEE Trans. Cloud Comput. 4(4), 429–439 (2016). https://doi.org/10.1109/TCC.2014.2362120
Goudarzi, H., Pedram, M.: Hierarchical sla-driven resource management for peak power-aware and energy-efficient operation of a cloud datacenter. IEEE Trans. Cloud Comput. 4(2), 222–236 (2016). https://doi.org/10.1109/TCC.2015.2474369
Huang, Z., Tsang, D.H.K.: M-convex VM consolidation: towards a better VM workload consolidation. IEEE Trans. Cloud Comput. 4(4), 415–428 (2016). https://doi.org/10.1109/TCC.2014.2369423
Kang, D., Choi, G., Kim, S., Hwang, I., Youn, C.: Workload-aware resource management for energy efficient heterogeneous docker containers. In: 2016 IEEE Region 10 Conference (TENCON), pp. 2428–2431 (2016). https://doi.org/10.1109/TENCON.2016.7848467
Khatua, S., Sur, P.K., Das, R.K., Mukherjee, N.: Heuristic-based resource reservation strategies for public cloud. IEEE Trans. Cloud Comput. 4(4), 392–401 (2016). https://doi.org/10.1109/TCC.2014.2369434
Mishra, M., Bellur, U.: Whither tightness of packing? The case for stable VM placement. IEEE Trans. Cloud Comput. 4(4), 481–494 (2016). https://doi.org/10.1109/TCC.2014.2378756
Nakagawa, G., Oikawa, S.: Behavior-based memory resource management for container-based virtualization. In: 2016 4th Intl Conf on Applied Computing and Information Technology/3rd Intl Conf on Computational Science/Intelligence and Applied Informatics/1st Intl Conf on Big Data, Cloud Computing, Data Science Engineering (ACIT-CSII-BCD), pp. 213–217 (2016). https://doi.org/10.1109/ACIT-CSII-BCD.2016.049
Pantazoglou, M., Tzortzakis, G., Delis, A.: Decentralized and energy-efficient workload management in enterprise clouds. IEEE Trans. Cloud Comput. 4(2), 196–209 (2016). https://doi.org/10.1109/TCC.2015.2464817
d R Righi, R., Rodrigues, V.F., da Costa, C.A., Galante, G., de Bona, L.C.E., Ferreto, T.: Autoelastic: automatic resource elasticity for high performance applications in the cloud. IEEE Trans. Cloud Comput. 4(1), 6–19 (2016). https://doi.org/10.1109/TCC.2015.2424876
Salah, K., Elbadawi, K., Boutaba, R.: An analytical model for estimating cloud resources of elastic services. J. Netw. Syst. Manag. 24(2), 285–308 (2016). https://doi.org/10.1007/s10922-015-9352-x
Wajid, U., Cappiello, C., Plebani, P., Pernici, B., Mehandjiev, N., Vitali, M., Gienger, M., Kavoussanakis, K., Margery, D., Perez, D.G., Sampaio, P.: On achieving energy efficiency and reducing \({\rm CO}_2\) footprint in cloud computing. IEEE Trans. Cloud Comput. 4(2), 138–151 (2016). https://doi.org/10.1109/TCC.2015.2453988
Wan, J., Zhang, R., Gui, X., Xu, B.: Reactive pricing: an adaptive pricing policy for cloud providers to maximize profit. IEEE Trans. Netw. Serv. Manag. 13(4), 941–953 (2016). https://doi.org/10.1109/TNSM.2016.2618394
Wanis, B., Samaan, N., Karmouch, A.: Efficient modeling and demand allocation for differentiated cloud virtual-network as-a service offerings. IEEE Trans. Cloud Comput. 4(4), 376–391 (2016). https://doi.org/10.1109/TCC.2015.2389814
Wu, H., Ren, S., Garzoglio, G., Timm, S., Bernabeu, G., Chadwick, K., Noh, S.: A reference model for virtual machine launching overhead. IEEE Trans. Cloud Comput. 4(3), 250–264 (2016). https://doi.org/10.1109/TCC.2014.2369439
Xu, X., Dou, W., Zhang, X., Chen, J.: Enreal: An energy-aware resource allocation method for scientific workflow executions in cloud environment. IEEE Trans. Cloud Comput. 4(2), 166–179 (2016). https://doi.org/10.1109/TCC.2015.2453966
Zhou, A., Wang, S., Zheng, Z., Hsu, C., Lyu, M.R., Yang, F.: On cloud service reliability enhancement with optimal resource usage. IEEE Trans. Cloud Comput. 4(4), 452–466 (2016). https://doi.org/10.1109/TCC.2014.2369421
Awada, U., Barker, A.: Improving resource efficiency of container-instance clusters on clouds. In: 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), pp. 929–934 (2017). https://doi.org/10.1109/CCGRID.2017.113
Awada, U., Barker, A.: Resource efficiency in container-instance clusters. In: Proceedings of the Second International Conference on Internet of Things, Data and Cloud Computing, ICC ’17, pp. 181:1–181:5. ACM, New York (2017). https://doi.org/10.1145/3018896.3056798
Babaioff, M., Mansour, Y., Nisan, N., Noti, G., Curino, C., Ganapathy, N., Menache, I., Reingold, O., Tennenholtz, M., Timnat, E.: Era: A framework for economic resource allocation for the cloud. In: Proceedings of the 26th International Conference on World Wide Web Companion, WWW ’17 Companion, pp. 635–642. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland (2017). https://doi.org/10.1145/3041021.3054186
Chard, R., Chard, K., Wolski, R., Madduri, R., Ng, B., Bubendorfer, K., Foster, I.: Cost-aware cloud profiling, prediction, and provisioning as a service. IEEE Cloud Comput. 4(4), 48–59 (2017). https://doi.org/10.1109/MCC.2017.3791025
Dalmazo, B.L., Vilela, J.P., Curado, M.: Performance analysis of network traffic predictors in the cloud. J. Netw. Syst. Manag. 25(2), 290–320 (2017). https://doi.org/10.1007/s10922-016-9392-x
Hai, T.H., Nguyen, P.: A pricing model for sharing cloudlets in mobile cloud computing. In: 2017 International Conference on Advanced Computing and Applications (ACOMP), pp. 149–153 (2017). https://doi.org/10.1109/ACOMP.2017.13
Hoque, S., d. Brito, M.S., Willner, A., Keil, O., Magedanz, T.: Towards container orchestration in fog computing infrastructures. In: 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), vol. 2, pp. 294–299 (2017). https://doi.org/10.1109/COMPSAC.2017.248
Jin, X., Zhang, F., Wang, L., Hu, S., Zhou, B., Liu, Z.: Joint optimization of operational cost and performance interference in cloud data centers. IEEE Trans. Cloud Comput. 5(4), 697–711 (2017). https://doi.org/10.1109/TCC.2015.2449839
Khasnabish, J.N., Mithani, M.F., Rao, S.: Tier-centric resource allocation in multi-tier cloud systems. IEEE Trans. Cloud Comput. 5(3), 576–589 (2017). https://doi.org/10.1109/TCC.2015.2424888
Li, J., Ma, R., Guan, H., Wei, D.S.L.: Accurate cpu proportional share and predictable i/o responsiveness for virtual machine monitor: a case study in xen. IEEE Trans. Cloud Comput. 5(4), 604–616 (2017). https://doi.org/10.1109/TCC.2015.2441705
Li, J.Z., Woodside, M., Chinneck, J., Litiou, M.: Adaptive cloud deployment using persistence strategies and application awareness. IEEE Trans. Cloud Comput. 5(2), 277–290 (2017). https://doi.org/10.1109/TCC.2015.2409873
Lloyd, W.J., Pallickara, S., David, O., Arabi, M., Wible, T., Ditty, J., Rojas, K.: Demystifying the clouds: harnessing resource utilization models for cost effective infrastructure alternatives. IEEE Trans. Cloud Comput. 5(4), 667–680 (2017). https://doi.org/10.1109/TCC.2015.2430339
Maenhaut, P.J., Moens, H., Volckaert, B., Ongenae, V., Turck, F.D.: A dynamic tenant-defined storage system for efficient resource management in cloud applications. J. Netw. Comput. Appl. 93, 182–196 (2017). https://doi.org/10.1016/j.jnca.2017.05.014
Mebrek, A., Merghem-Boulahia, L., Esseghir, M.: Efficient green solution for a balanced energy consumption and delay in the IOT-fog-cloud computing. In: 2017 IEEE 16th International Symposium on Network Computing and Applications (NCA), pp. 1–4 (2017). https://doi.org/10.1109/NCA.2017.8171359
Mechtri, M., Hadji, M., Zeghlache, D.: Exact and heuristic resource mapping algorithms for distributed and hybrid clouds. IEEE Trans. Cloud Comput. 5(4), 681–696 (2017). https://doi.org/10.1109/TCC.2015.2427192
Merzoug, S., Kazar, O., Derdour, M.: Intelligent strategy of allocation resource for cloud datacenter based on MAS CP approach. In: Proceedings of the International Conference on Computing for Engineering and Sciences, ICCES ’17, pp. 50–55. ACM, New York (2017). https://doi.org/10.1145/3129186.3129197
Mireslami, S., Rakai, L., Far, B.H., Wang, M.: Simultaneous cost and qos optimization for cloud resource allocation. IEEE Trans. Netw. Serv. Manag. 14(3), 676–689 (2017). https://doi.org/10.1109/TNSM.2017.2738026
Nardelli, M., Hochreiner, C., Schulte, S.: Elastic provisioning of virtual machines for container deployment. In: Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering Companion, ICPE ’17 Companion, pp. 5–10. ACM, New York (2017). https://doi.org/10.1145/3053600.3053602
Nitu, V., Teabe, B., Fopa, L., Tchana, A., Hagimont, D.: Stopgap: Elastic VMS to enhance server consolidation. In: Proceedings of the Symposium on Applied Computing, SAC ’17, pp. 358–363. ACM, New York (2017). https://doi.org/10.1145/3019612.3019626
Paya, A., Marinescu, D.C.: Energy-aware load balancing and application scaling for the cloud ecosystem. IEEE Trans. Cloud Comput. 5(1), 15–27 (2017). https://doi.org/10.1109/TCC.2015.2396059
Rankothge, W., Le, F., Russo, A., Lobo, J.: Optimizing resource allocation for virtualized network functions in a cloud center using genetic algorithms. IEEE Trans. Netw. Serv. Manag. 14(2), 343–356 (2017). https://doi.org/10.1109/TNSM.2017.2686979
Tang, L., Chen, H.: Joint pricing and capacity planning in the IaaS cloud market. IEEE Trans. Cloud Comput. 5(1), 57–70 (2017). https://doi.org/10.1109/TCC.2014.2372811
Xu, D., Liu, X., Niu, Z.: Joint resource provisioning for internet datacenters with diverse and dynamic traffic. IEEE Trans. Cloud Comput. 5(1), 71–84 (2017). https://doi.org/10.1109/TCC.2014.2382118
Yang, Y., Chang, X., Liu, J., Li, L.: Towards robust green virtual cloud data center provisioning. IEEE Trans. Cloud Comput. 5(2), 168–181 (2017). https://doi.org/10.1109/TCC.2015.2459704
Yi, X., Liu, F., Niu, D., Jin, H., Lui, J.C.S.: Cocoa: dynamic container-based group buying strategies for cloud computing. ACM Trans. Model. Perform. Eval. Comput. Syst. 2(2), 81–831 (2017). https://doi.org/10.1145/3022876
Yu, B., Pan, J.: Optimize the server provisioning and request dispatching in distributed memory cache services. IEEE Trans. Cloud Comput. 5(2), 193–207 (2017). https://doi.org/10.1109/TCC.2015.2469663
Zhang, W., Xie, H., Hsu, C.: Automatic memory control of multiple virtual machines on a consolidated server. IEEE Trans. Cloud Comput. 5(1), 2–14 (2017). https://doi.org/10.1109/TCC.2014.2378794
Alam, M., Rufino, J., Ferreira, J., Ahmed, S.H., Shah, N., Chen, Y.: Orchestration of microservices for IOT using docker and edge computing. IEEE Commun. Mag. 56(9), 118–123 (2018). https://doi.org/10.1109/MCOM.2018.1701233
Aral, A., Ovatman, T.: A decentralized replica placement algorithm for edge computing. IEEE Trans. Netw. Serv. Manag. 15(2), 516–529 (2018). https://doi.org/10.1109/TNSM.2017.2788945
Atrey, A., Seghbroeck, G.V., Volckaert, B., Turck, F.D.: Brahma+: a framework for resource scaling of streaming and asap time-varying workflows. IEEE Trans. Netw. Serv. Manag. 15(3), 894–908 (2018). https://doi.org/10.1109/TNSM.2018.2830311
Barkat, A., Kechadi, M.T., Verticale, G., Filippini, I., Capone, A.: Green approach for joint management of geo-distributed data centers and interconnection networks. IEEE Trans. Netw. Serv. Manag. 26(3), 723–754 (2018). https://doi.org/10.1007/s10922-017-9441-0
Balos, C., Vega, D.D.L., Abuelhaj, Z., Kari, C., Mueller, D., Pallipuram, V.K.: A2cloud: An analytical model for application-to-cloud matching to empower scientific computing. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 548–555 (2018). https://doi.org/10.1109/CLOUD.2018.00076
Barrameda, J., Samaan, N.: A novel statistical cost model and an algorithm for efficient application offloading to clouds. IEEE Trans. Cloud Comput. 6(3), 598–611 (2018). https://doi.org/10.1109/TCC.2015.2513404
Borjigin, W., Ota, K., Dong, M.: In broker we trust: a double-auction approach for resource allocation in NFV markets. IEEE Trans. Netw. Serv. Manag. 15(4), 1322–1333 (2018). https://doi.org/10.1109/TNSM.2018.2882535
Bouet, M., Conan, V.: Mobile edge computing resources optimization: a geo-clustering approach. IEEE Trans. Netw. Serv. Manag. 15(2), 787–796 (2018). https://doi.org/10.1109/TNSM.2018.2816263
Cheng, M., Li, J., Nazarian, S.: Drl-cloud: Deep reinforcement learning-based resource provisioning and task scheduling for cloud service providers. In: 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 129–134 (2018). https://doi.org/10.1109/ASPDAC.2018.8297294
Diaz-Montes, J., Diaz-Granados, M., Zou, M., Tao, S., Parashar, M.: Supporting data-intensive workflows in software-defined federated multi-clouds. IEEE Trans. Cloud Comput. 6(1), 250–263 (2018). https://doi.org/10.1109/TCC.2015.2481410
Gill, S.S., Buyya, R., Chana, I., Singh, M., Abraham, A.: Bullet: particle swarm optimization based scheduling technique for provisioned cloud resources. J. Netw. Syst. Manag. 26(2), 361–400 (2018). https://doi.org/10.1007/s10922-017-9419-y
Guo, T., Shenoy, P.: Providing geo-elasticity in geographically distributed clouds. ACM Trans. Internet Technol. 18(3), 38:1–38:27 (2018). https://doi.org/10.1145/3169794
Guo, W., Lin, B., Chen, G., Chen, Y., Liang, F.: Cost-driven scheduling for deadline-based workflow across multiple clouds. IEEE Trans. Netw. Serv. Manag. 15(4), 1571–1585 (2018). https://doi.org/10.1109/TNSM.2018.2872066
Guo, Y., Stolyar, A.L., Walid, A.: Shadow-routing based dynamic algorithms for virtual machine placement in a network cloud. IEEE Trans. Cloud Comput. 6(1), 209–220 (2018). https://doi.org/10.1109/TCC.2015.2464795
Hauser, C.B., Wesner, S.: Reviewing cloud monitoring: towards cloud resource profiling. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 678–685 (2018). https://doi.org/10.1109/CLOUD.2018.00093
Heidari, S., Buyya, R.: Cost-efficient and network-aware dynamic repartitioning-based algorithms for scheduling large-scale graphs in cloud computing environments. Softw. Pract. Exp. 48(12), 2174–2192 (2018). https://doi.org/10.1002/spe.2623
Jia, B., Hu, H., Zeng, Y., Xu, T., Yang, Y.: Double-matching resource allocation strategy in fog computing networks based on cost efficiency. J. Commun. Netw. 20(3), 237–246 (2018). https://doi.org/10.1109/JCN.2018.000036
Jia, G., Han, G., Jiang, J., Chan, S., Liu, Y.: Dynamic cloud resource management for efficient media applications in mobile computing environments. Pers. Ubiquitous Comput. 22(3), 561–573 (2018). https://doi.org/10.1007/s00779-018-1118-5
Khabbaz, M., Assi, C.M.: Modelling and analysis of a novel deadline-aware scheduling scheme for cloud computing data centers. IEEE Trans. Cloud Comput. 6(1), 141–155 (2018). https://doi.org/10.1109/TCC.2015.2481429
Lahmann, G., McCann, T., Lloyd, W.: Container memory allocation discrepancies: an investigation on memory utilization gaps for container-based application deployments. In: 2018 IEEE International Conference on Cloud Engineering (IC2E), pp. 404–405 (2018). https://doi.org/10.1109/IC2E.2018.00076
Lin, Y., Lai, Y., Huang, J., Chien, H.: Three-tier capacity and traffic allocation for core, edges, and devices for mobile edge computing. IEEE Trans. Netw. Serv. Manag. 15(3), 923–933 (2018). https://doi.org/10.1109/TNSM.2018.2852643
Nawrocki, P., Sniezynski, B.: Adaptive service management in mobile cloud computing by means of supervised and reinforcement learning. J. Netw. Syst. Manag. 26(1), 1–22 (2018). https://doi.org/10.1007/s10922-017-9405-4
Prats, D.B., Berral, J.L., Carrera, D.: Automatic generation of workload profiles using unsupervised learning pipelines. IEEE Trans. Netw. Serv. Manag. 15(1), 142–155 (2018). https://doi.org/10.1109/TNSM.2017.2786047
Rahimi, M.R., Venkatasubramanian, N., Mehrotra, S., Vasilakos, A.V.: On optimal and fair service allocation in mobile cloud computing. IEEE Trans. Cloud Comput. 6(3), 815–828 (2018). https://doi.org/10.1109/TCC.2015.2511729
Sahni, J., Vidyarthi, D.P.: A cost-effective deadline-constrained dynamic scheduling algorithm for scientific workflows in a cloud environment. IEEE Trans. Cloud Comput. 6(1), 2–18 (2018). https://doi.org/10.1109/TCC.2015.2451649
Scheuner, J., Leitner, P.: Estimating cloud application performance based on micro-benchmark profiling. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 90–97 (2018). https://doi.org/10.1109/CLOUD.2018.00019
Simonis, I.: Container-based architecture to optimize the integration of microservices into cloud-based data-intensive application scenarios. In: Proceedings of the 12th European Conference on Software Architecture: Companion Proceedings, ECSA ’18, pp. 34:1–34:3. ACM, New York (2018). https://doi.org/10.1145/3241403.3241439
Sathya Sofia, A., GaneshKumar, P.: Multi-objective task scheduling to minimize energy consumption and makespan of cloud computing using NSGA-II. J. Netw. Syst. Manag. 26(2), 463–485 (2018). https://doi.org/10.1007/s10922-017-9425-0
Takahashi, K., Aida, K., Tanjo, T., Sun, J.: A portable load balancer for kubernetes cluster. In: Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region, HPC Asia 2018, pp. 222–231. ACM, New York (2018). https://doi.org/10.1145/3149457.3149473
Trihinas, D., Pallis, G., Dikaiakos, M.D.: Monitoring elastically adaptive multi-cloud services. IEEE Trans. Cloud Comput. 6(3), 800–814 (2018). https://doi.org/10.1109/TCC.2015.2511760
Wang, L., Gelenbe, E.: Adaptive dispatching of tasks in the cloud. IEEE Trans. Cloud Comput. 6(1), 33–45 (2018). https://doi.org/10.1109/TCC.2015.2474406
Wei, L., Foh, C.H., He, B., Cai, J.: Towards efficient resource allocation for heterogeneous workloads in iaas clouds. IEEE Trans. Cloud Comput. 6(1), 264–275 (2018). https://doi.org/10.1109/TCC.2015.2481400
Xie, R., Jia, X.: Data transfer scheduling for maximizing throughput of big-data computing in cloud systems. IEEE Trans. Cloud Comput. 6(1), 87–98 (2018). https://doi.org/10.1109/TCC.2015.2464808
Zhang, W., Wen, Y.: Energy-efficient task execution for application as a general topology in mobile cloud computing. IEEE Trans. Cloud Comput. 6(3), 708–719 (2018). https://doi.org/10.1109/TCC.2015.2511727
Zhang, Y., Ghosh, A., Aggarwal, V., Lan, T.: Tiered cloud storage via two-stage, latency-aware bidding. IEEE Trans. Netw. Serv. Manag. (2018). https://doi.org/10.1109/TNSM.2018.2875475
Introducing Amazon EC2 spot instances for specific duration workloads. https://aws.amazon.com/about-aws/whats-new/2015/10/introducing-amazon-ec2-spot-instances-for-specific-duration-workloads/. Accessed 9 Sept 2019
Juju solutions for container management. https://jaas.ai/containers. Accessed 9 Sept 2019
Masip-Bruin, X., Marín-Tordera, E., Juan-Ferrer, A., Queralt, A., Jukan, A., Garcia, J., Lezzi, D., Jensen, J., Cordeiro, C., Leckey, A., Salis, A., Guilhot, D., Cankar, M.: mf2c: towards a coordinated management of the IOT-fog-cloud continuum. In: Proceedings of the 4th ACM MobiHoc Workshop on Experiences with the Design and Implementation of Smart Objects, SMARTOBJECTS ’18, pp. 8:1–8:8. ACM, New York (2018). https://doi.org/10.1145/3213299.3213307
Almutairi, A., Sarfraz, M.I., Ghafoor, A.: Risk-aware management of virtual resources in access controlled service-oriented cloud datacenters. IEEE Trans. Cloud Comput. 6(1), 168–181 (2018). https://doi.org/10.1109/TCC.2015.2453981
Zhai, Y., Yin, L., Chase, J., Ristenpart, T., Swift, M.: CQSTR: Securing cross-tenant applications with cloud containers. In: Proceedings of the Seventh ACM Symposium on Cloud Computing, SoCC ’16, pp. 223–236. ACM, New York (2016). https://doi.org/10.1145/2987550.2987558
Lins, S., Schneider, S., Sunyaev, A.: Trust is good, control is better: creating secure clouds by continuous auditing. IEEE Trans. Cloud Comput. 6(3), 890–903 (2018). https://doi.org/10.1109/TCC.2016.2522411
Maenhaut, P.J., Volckaert, B., Ongenae, V., De Turck, F.: Efficient resource management in the cloud: from simulation to experimental validation using a low-cost raspberry pi testbed. Softw. Pract. Exp. 49(3), 449–477 (2019). https://doi.org/10.1002/spe.2669
Calheiros, R., Ranjan, R., Beloglazov, A., De Rose, C., Buyya, R.: Cloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011). https://doi.org/10.1002/spe.995
Fed4fire+—federation for fire plus. https://www.fed4fire.eu/. Accessed 9 Sept 2019
FUTEBOL Brazil/UFRGS. http://futebol.inf.ufrgs.br/. Accessed 9 Sept 2019
Eivy, A.: Be wary of the economics of “serverless” cloud computing. IEEE Cloud Comput. 4(2), 6–12 (2017). https://doi.org/10.1109/MCC.2017.32
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Maenhaut, PJ., Volckaert, B., Ongenae, V. et al. Resource Management in a Containerized Cloud: Status and Challenges. J Netw Syst Manage 28, 197–246 (2020). https://doi.org/10.1007/s10922-019-09504-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10922-019-09504-0