iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s10916-017-0788-2
Data Based Prediction of Blood Glucose Concentrations Using Evolutionary Methods | Journal of Medical Systems Skip to main content

Advertisement

Log in

Data Based Prediction of Blood Glucose Concentrations Using Evolutionary Methods

  • Patient Facing Systems
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Predicting glucose values on the basis of insulin and food intakes is a difficult task that people with diabetes need to do daily. This is necessary as it is important to maintain glucose levels at appropriate values to avoid not only short-term, but also long-term complications of the illness. Artificial intelligence in general and machine learning techniques in particular have already lead to promising results in modeling and predicting glucose concentrations. In this work, several machine learning techniques are used for the modeling and prediction of glucose concentrations using as inputs the values measured by a continuous monitoring glucose system as well as also previous and estimated future carbohydrate intakes and insulin injections. In particular, we use the following four techniques: genetic programming, random forests, k-nearest neighbors, and grammatical evolution. We propose two new enhanced modeling algorithms for glucose prediction, namely (i) a variant of grammatical evolution which uses an optimized grammar, and (ii) a variant of tree-based genetic programming which uses a three-compartment model for carbohydrate and insulin dynamics. The predictors were trained and tested using data of ten patients from a public hospital in Spain. We analyze our experimental results using the Clarke error grid metric and see that 90% of the forecasts are correct (i.e., Clarke error categories A and B), but still even the best methods produce 5 to 10% of serious errors (category D) and approximately 0.5% of very serious errors (category E). We also propose an enhanced genetic programming algorithm that incorporates a three-compartment model into symbolic regression models to create smoothed time series of the original carbohydrate and insulin time series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Also see Howard and Bowles: “The Two Most Important Algorithms in Predictive Modeling Today”, STRATA Conference, 2012, O’Reilly.

  2. http://www.alglib.net/

  3. http://dev.heuristiclab.com/

  4. The expression in Fig. 3 includes also some constants (< c t e > ) not present in Eq. 16 for the sake of simplicity of the explanation.

  5. We use wrapping of 5 because with lower values we obtain high percentages of non valid solutions during the initial generations.

  6. Execution times using an Intel 7 processor with 8GB RAM running Windows 10 as operating system at 3.6 GHz.

References

  1. Adaptive, Group, B. S.: ABSys JECO (Java Evolutionary COmputation) library. Available at: https://github.com/ABSysGroup/jeco (2016)

  2. Adaptive and Bioinspired Systems Group: Java evolutionary computation library (JECO). https://github.com/ABSysGroup/jeco (2017)

  3. Affenzeller, M., and Wagner, S.: Offspring selection: A new self-adaptive selection scheme for genetic algorithms. In: Adaptive and Natural Computing Algorithms, pp. 218–221. Springer (2005)

  4. Affenzeller, M., Wagner, S., Winkler, S., Beham, A.: Genetic algorithms and Genetic Programming: Modern Concepts and Practical Applications. CRC Press (2009)

  5. Altman, N. S., An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3): 175–185, 1992.

    Google Scholar 

  6. Bakhtiani, P. A., Zhao, L. M., El Youssef, J., Castle, J. R., Ward, W. K., A review of artificial pancreas technologies with an emphasis on bi-hormonal therapy. Diab. Obes. Metabol. 15(12):1065–1070, 2013.

    Article  CAS  Google Scholar 

  7. Biau, G., and Scornet, E.: A random forest guided tour. TEST 25(2):197–227. doi:http://dx.doi.org/10.1007/s11749-016-0481-7, 2016

  8. Breiman, L., Random forests. Mach. Learn. 45(1):5–32, 2001.

    Article  Google Scholar 

  9. Clarke, WL, Cox, D, Gonder-Frederick, LA, Carter, W, Pohl, SL, Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diab. Care 10(5):622–628, 1987.

    Article  CAS  Google Scholar 

  10. Cobelli, C., Dalla Man, C., Sparacino, G., Magni, L., De Nicolao, G., Kovatchev, B. P., Diabetes: Models, signals, and control. IEEE Rev. Biomed. Eng. 2:54–96, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cobelli, C., Man, C. D., Pedersen, M. G., Bertoldo, A., Toffolo, G.: Advancing our understanding of the glucose system via modeling: A perspective. IEEE Trans. Biomed. Eng. 61(5):1577–1592. doi:10.1109/TBME.2014.2310514, 2014

  12. Cobelli, C., Renard, E., Kovatchev, B., Artificial pancreas: Past, present, future. Diabetes 60(11): 2672–2682, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Colmenar, J. M., Hidalgo, J. I., Lanchares, J., Garnica, O., Risco, J. L., Contreras, I., Sánchez, A., Velasco, J. M.: Compilable phenotypes: Speeding-up the evaluation of glucose models in grammatical evolution. In: European Conference on the Applications of Evolutionary Computation, pp. 118–133. Springer International Publishing (2016)

  14. Colmenar, J. M., Winkler, S. M., Kronberger, G., Maqueda, E., Botella, M., Hidalgo, J. I.: Predicting glycemia in diabetic patients by evolutionary computation and continuous glucose monitoring. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, GECCO ’16 Companion, pp. 1393–1400. ACM, New York (2016), 10.1145/2908961.2931734

  15. Colmenar, J. M., Winkler, S. M., Kronberger, G., Maqueda, E., Botella, M., Hidalgo, J. I.: Predicting glycemia in diabetic patients by evolutionary computation and continuous glucose monitoring. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 1393–1400. ACM (2016)

  16. Contreras, I., Hidalgo, J. I., Nuñez-Letamendía, L., A hybrid automated trading system based on multi-objective grammatical evolution. J. Intell. Fuzzy Syst. 32(3):2461–2475, 2017.

    Article  Google Scholar 

  17. Contreras, I., and Vehi, J., Mid-Term Prediction of Blood Glucose from Continuous Glucose Sensors, Meal Information and Administered Insulin, pp. 1137–1143. Cham: Springer International Publishing, 2016.

    Google Scholar 

  18. De Falco, I., Della Cioppa, A., Tarantino, E., A Genetic Programming System for Time Series Prediction and Its Application to El Niño Forecast, pp. 151–162. Berlin: Springer Berlin Heidelberg, 2005.

    Google Scholar 

  19. Dempsey, I., O’Neill, M., Brabazon, A.: Foundations in Grammatical Evolution for Dynamic Environments. Vol. 194 Springer (2009)

  20. Demsar, J., Statistical comparison of classifiers over multiple data sets. J. Mach. Learn. Res. 7:1–30, 2006.

    Google Scholar 

  21. Doyle, F. J., Huyett, L. M., Lee, J. B., Zisser, H. C., Dassau, E.: Closed-loop artificial pancreas systems: Engineering the algorithms. Diab. Care 37(5):1191–1197. doi:10.2337/dc13-2108, 2014

  22. Foundation, I.D.: IDF Diabetes Atlas 2014, https://www.idf.org/sites/default/files/Atlas-poster-2014_EN.pdf

  23. Gani, A., Gribok, A. V., Rajaraman, S., Ward, W. K., Reifman, J., Predicting subcutaneous glucose concentration in humans: data-driven glucose modeling. IEEE Trans. Biomed. Eng. 56(2):246–254, 2009.

    Article  PubMed  Google Scholar 

  24. Hansen, B., and Matytsina, I., Insulin administration: Selecting the appropriate needle and individualizing the injection technique. Expert Opin. Drug Deliv. 8(10):1395–1406, 2011.

    Article  CAS  PubMed  Google Scholar 

  25. Hidalgo, J. I., Colmenar, J. M., Risco-Martín, J. L., Cuesta-Infante, A., Maqueda, E., Botella, M., Rubio, J. A., Modeling glycemia in humans by means of grammatical evolution. Appl. Soft. Comput. 20: 40–53, 2014. doi:10.1016/j.asoc.2013.11.006.

    Article  Google Scholar 

  26. Hidalgo, J. I., Colmenar, J. M., Risco-Martin, J. L., Cuesta-Infante, A., Maqueda, E., Botella, M., Rubio, J. A., Modeling glycemia in humans by means of grammatical evolution. Appl. Soft Comput. 20:40–53, 2014.

    Article  Google Scholar 

  27. Hovorka, R., Kumareswaran, K., Harris, J., Allen, J. M., Elleri, D., Xing, D., Kollman, C., Nodale, M., Murphy, H. R., Dunger, D. B., et al., Overnight closed loop insulin delivery (artificial pancreas) in adults with type 1 diabetes: crossover randomised controlled studies. Bmj 342:d1855, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hyndman, R. J., and Athanasopoulos, G.: Forecasting: Principles and practice. Online textbook (2013)

  29. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scaling. In: European Conference on Genetic Programming, pp. 70–82. Springer (2003)

  30. Kommenda, M., Kronberger, G., Wagner, S., Winkler, S., Affenzeller, M.: On the architecture and implementation of tree-based genetic programming in heuristiclab. In: Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 101–108. ACM (2012)

  31. Koza, J. R., Genetic Programming. Cambridge: The MIT Press, 1992.

    Google Scholar 

  32. Ljung, L., Perspectives on system identification. Annu. Rev. Control. 34(1):1–12, 2010.

    Article  Google Scholar 

  33. Luke, S., Two fast tree-creation algorithms for genetic programming. IEEE Trans. Evol. Comput. 4(3):274–283, 2000.

    Article  Google Scholar 

  34. Moreno-Salinas, D., Besada-Portas, E., López-Orozco, J., Chaos, D., de la Cruz, J., Aranda, J., Symbolic regression for marine vehicles identification. IFAC-PapersOnLine 48(16):210–216, 2015.

    Article  Google Scholar 

  35. Nemenyi, P.: Distribution-free multiple comparisons. Ph.D. thesis Princeton University (1963)

  36. O’Neill, M., and Ryan, C., Grammatical evolution. IEEE Trans. Evol. Comput. 5(4):349–358, 2001.

    Article  Google Scholar 

  37. O’Neill, M., and Ryan, C.: Grammatical evolution by grammatical evolution: The evolution of grammar and genetic code. In: European Conference on Genetic Programming, pp. 138–149. Springer (2004)

  38. Oviedo, S., Vehí, J., Calm, R., Armengol, J.: A review of personalized blood glucose prediction strategies for t1dm patients. Int. J. Numer. Methods Biomed. Eng. 10.1002/cnm.2833 (2016)

  39. Parkes, JL, Slatin, SL, Pardo, S, Ginsberg, BH, A new consensus error grid to evaluate the clinical significance of inaccuracies in the measurement of blood glucose. Diab. Care 23(8):1143–1148, 2000.

    Article  CAS  Google Scholar 

  40. Rechenberg, I.: Evolutionsstrategie. Friedrich Frommann Verlag (1973)

  41. Santini, M., and Tettamanzi, A.: Genetic programming for financial time series prediction. In: Proceedings of the 4th European Conference on Genetic Programming, EuroGP ’01, pp. 361–370. Springer-Verlag, London (2001). http://dl.acm.org/citation.cfm?id=646809.704093

  42. Schwefel, H. P., Evolutionsstrategie und numerische optimierung. Technische Universität Berlin: Ph.D. thesis, 1975.

    Google Scholar 

  43. Sparacino, G., Zanderigo, F., Corazza, S., Maran, A., Facchinetti, A., Cobelli, C., Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series. IEEE Trans. Biomed. Eng. 54(5):931–937, 2007.

    Article  PubMed  Google Scholar 

  44. Velasco, J. M., Winkler, S., Hidalgo, J. I., Garnica, O., Lanchares, J., Colmenar, J. M., Maqueda, E., Botella, M., Rubio, J. A.: Data-based identification of prediction models for glucose. In: Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 1327–1334. ACM (2015)

  45. Wagner, S., and Affenzeller, M.: Sexualga: Gender-specific selection for genetic algorithms. In: Proceedings of the 9th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI). Vol. 4, pp. 76–81 (2005)

  46. Weissberg-Benchell, J., Antisdel-Lomaglio, J., Seshadri, R., Insulin pump therapy. Diab. Care 26(4): 1079–1087, 2003.

    Article  Google Scholar 

  47. Wilinska, M. E., Chassin, L. J., Schaller, H. C., Schaupp, L., Pieber, T. R., Hovorka, R., Insulin kinetics in type-1 diabetes: Continuous and bolus delivery of rapid acting insulin. IEEE Trans. Biomed. Eng. 52(1): 3–12, 2005.

    Article  PubMed  Google Scholar 

  48. Zhao, C., Dassau, E., Jovanoviċ, L., Zisser, H. C., Doyle, F. J. III, Seborg, D. E., Predicting subcutaneous glucose concentration using a latent-variable-based statistical method for type 1 diabetes mellitus. J. Diab. Sci. Technol 6(3):617–633, 2012.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Spanish Government Minister of Science and Innovation under grants TIN2014-54806-R and TIN2015-65460-C2. J. I. Hidalgo also acknowledges the support of the Spanish Ministry of Education mobility grant PRX16/00216. S. M. Winkler and G. Kronberger acknowledge the support of the Austrian Research Promotion Agency (FFG) under grant #843532 (COMET Project Heuristic Optimization in Production and Logistics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ignacio Hidalgo.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

This article is part of the Topical Collection on Patient Facing Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hidalgo, J., Colmenar, J., Kronberger, G. et al. Data Based Prediction of Blood Glucose Concentrations Using Evolutionary Methods. J Med Syst 41, 142 (2017). https://doi.org/10.1007/s10916-017-0788-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-017-0788-2

Keywords

Navigation