Abstract
In this paper, we study a mixed discontinuous Galerkin (MDG) method to solve linear elasticity problem with arbitrary order discontinuous finite element spaces in d-dimension (\(d=2,3\)). This method uses polynomials of degree \(k+1\) for the stress and of degree k for the displacement (\(k\ge 0\)). The mixed DG scheme is proved to be well-posed under proper norms. Specifically, we prove that, for any \(k \ge 0\), the \(H(\mathrm{div})\)-like error estimate for the stress and \(L^2\) error estimate for the displacement are optimal. We further establish the optimal \(L^2\) error estimate for the stress provided that the \({\mathcal {P}}_{k+2}-{\mathcal {P}}_{k+1}^{-1}\) Stokes pair is stable and \(k \ge d\). We also provide numerical results of MDG showing that the orders of convergence are actually sharp.
Similar content being viewed by others
References
Adams, S., Cockburn, B.: A mixed finite element method for elasticity in three dimensions. J. Sci. Comput. 25(3), 515–521 (2005)
Amara, M., Thomas, J.-M.: Equilibrium finite elements for the linear elastic problem. Numer. Math. 33(4), 367–383 (1979)
Arnold, D., Awanou, G., Winther, R.: Finite elements for symmetric tensors in three dimensions. Math. Comput. 77(263), 1229–1251 (2008)
Arnold, D., Awanou, G., Winther, R.: Nonconforming tetrahedral mixed finite elements for elasticity. Math. Models Methods Appl. Sci. 24(04), 783–796 (2014)
Arnold, D., Douglas Jr., J., Gupta, C.: A family of higher order mixed finite element methods for plane elasticity. Numer. Math. 45(1), 1–22 (1984)
Arnold, D., Falk, R., Winther, R.: Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comput. 76(260), 1699–1723 (2007)
Arnold, D., Winther, R.: Mixed finite elements for elasticity. Numer. Math. 92(3), 401–419 (2002)
Arnold, D., Winther, R.: Nonconforming mixed elements for elasticity. Math. Models Methods Appl. Sci. 13(03), 295–307 (2003)
Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)
Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006)
Boffi, D., Brezzi, F., Fortin, M.: Reduced symmetry elements in linear elasticity. Commun. Pure Appl. Anal. 8(1), 95–121 (2009)
Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics. Springer, Berlin (2013)
Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer, Berlin (2007)
Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Revue française d’automatique, informatique, recherche opérationnelle. Analyse numérique 8(2), 129–151 (1974)
Brezzi, F., Douglas Jr., J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47(2), 217–235 (1985)
Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 15. Springer, Berlin (1991)
Brezzi, F., Manzini, G., Marini, D., Pietra, P., Russo, A.: Discontinuous Galerkin approximations for elliptic problems. Numer. Methods Partial Differ. Equ. 16(4), 365–378 (2000)
Cai, Z., Ye, X.: A mixed nonconforming finite element for linear elasticity. Numer. Methods Partial Differ. Equ. 21(6), 1043–1051 (2005)
Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38(5), 1676–1706 (2000)
Chen, L., Jun, H., Huang, X.: Stabilized mixed finite element methods for linear elasticity on simplicial grids in \({\mathbb{R}}^n\). Comput. Methods Appl. Math. 17(1), 17–31 (2017)
Chen, Y., Huang, J., Huang, X., Yifeng, X.: On the local discontinuous Galerkin method for linear elasticity. Math. Probl. Eng. 2010, 759547 (2010). https://doi.org/10.1155/2010/759547
Cockburn, B.: Discontinuous Galerkin methods. ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik: Applied Mathematics and Mechanics 83(11), 731–754 (2003)
Cockburn, B., Gopalakrishnan, J., Guzmán, J.: A new elasticity element made for enforcing weak stress symmetry. Math. Comput. 79(271), 1331–1349 (2010)
Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)
Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)
Falk, R.S.: Finite element methods for linear elasticity. In: Brezzi, F., Boffi, D., Demkowicz, L., Duràn, R.G., Falk, R.S., Fortin, M. (eds.) Mixed Finite Elements, Compatibility Conditions, and Applications, pp. 159–194. Springer, Berlin (2008)
Farhloul, M., Fortin, M.: Dual hybrid methods for the elasticity and the stokes problems: a unified approach. Numer. Math. 76(4), 419–440 (1997)
Gong, S., Shuonan, W., Jinchao, X.: New hybridized mixed methods for linear elasticity and optimal multilevel solvers. Numer. Math. 141(2), 569–604 (2019)
Gopalakrishnan, J., Guzmán, J.: Symmetric nonconforming mixed finite elements for linear elasticity. SIAM J. Numer. Anal. 49(4), 1504–1520 (2011)
Gopalakrishnan, J., Guzmán, J.: A second elasticity element using the matrix bubble. IMA J. Numer. Anal. 32(1), 352–372 (2012)
Guzman, J., Scott, R.: The Scott–Vogelius finite elements revisited. Math. Comput. 88, 519–529 (2019)
Hong, Q., Wang, F., Shuonan, W., Jinchao, X.: A unified study of continuous and discontinuous Galerkin methods. Sci. China Math. 62(1), 1–32 (2019)
Hu, J., Zhang, S.: A family of conforming mixed finite elements for linear elasticity on triangular grids (2014). arXiv preprint arXiv:1406.7457
Jun, H.: Finite element approximations of symmetric tensors on simplicial grids in \({\mathbb{R}}^n\): The higher order case. J. Comput. Math. 33(3), 1–14 (2015)
Jun, H., Zhang, S.Y.: A family of symmetric mixed finite elements for linear elasticity on tetrahedral grids. Sci. China Math. 58(2), 297–307 (2015)
Jun, H., Zhang, S.: Finite element approximations of symmetric tensors on simplicial grids in \({\mathbb{R}}^n\): the lower order case. Math. Models Methods Appl. Sci. 26(09), 1649–1669 (2016)
Johnson, C., Mercier, B.: Some equilibrium finite element methods for two-dimensional elasticity problems. Numer. Math. 30(1), 103–116 (1978)
Qian, Y., Wu, S., Wang, F.: A mixed discontinuous galerkin method with symmetric stress for Brinkman problem based on the velocity-pseudostress formulation (2019). arXiv preprint arXiv:1907.01246
Qiu, W., Demkowicz, L.: Mixed hp-finite element method for linear elasticity with weakly imposed symmetry. Comput. Methods Appl. Mech. Eng. 198(47), 3682–3701 (2009)
Qiu, W., Shen, J., Shi, K.: An HDG method for linear elasticity with strong symmetric stresses. Math. Comput. 87(309), 69–93 (2018)
Scott, L.R., Vogelius, M.: Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. ESAIM: Math. Model. Numer. Anal. 19(1), 111–143 (1985)
Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990)
Soon, S.-C., Cockburn, B., Stolarski, H.K.: A hybridizable discontinuous Galerkin method for linear elasticity. Int. J. Numer. Methods Eng. 80(8), 1058–1092 (2009)
Shuonan, W., Gong, S., Jinchao, X.: Interior penalty mixed finite element methods of any order in any dimension for linear elasticity with strongly symmetric stress tensor. Math. Models Methods Appl. Sci. 27(14), 2711–2743 (2017)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The work of Fei Wang is partially supported by the National Natural Science Foundation of China (Grant No. 11771350). The work of Shuonan Wu is partially supported by the National Natural Science Foundation of China (Grant No. 11901016) and the startup Grant from Peking University. The work of the Jinchao Xu is partially supported by US Department of Energy Grant DE-SC0014400 and National Science Foundation Grant DMS-1819157.
Rights and permissions
About this article
Cite this article
Wang, F., Wu, S. & Xu, J. A Mixed Discontinuous Galerkin Method for Linear Elasticity with Strongly Imposed Symmetry. J Sci Comput 83, 2 (2020). https://doi.org/10.1007/s10915-020-01191-3
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-020-01191-3