iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s10915-012-9649-9
WENO Schemes and Their Application as Limiters for RKDG Methods Based on Trigonometric Approximation Spaces | Journal of Scientific Computing Skip to main content
Log in

WENO Schemes and Their Application as Limiters for RKDG Methods Based on Trigonometric Approximation Spaces

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we present a class of finite volume trigonometric weighted essentially non-oscillatory (TWENO) schemes and use them as limiters for Runge-Kutta discontinuous Galerkin (RKDG) methods based on trigonometric polynomial spaces to solve hyperbolic conservation laws and highly oscillatory problems. As usual, the goal is to obtain a robust and high order limiting procedure for such a RKDG method to simultaneously achieve uniformly high order accuracy in smooth regions and sharp, non-oscillatory shock transitions. The major advantage of schemes which are based on trigonometric polynomial spaces is that they can simulate the wave-like and highly oscillatory cases better than the ones based on algebraic polynomial spaces. We provide numerical results in one and two dimensions to illustrate the behavior of these procedures in such cases. Even though we do not utilize optimal parameters for the trigonometric polynomial spaces, we do observe that the numerical results obtained by the schemes based on such spaces are better than or similar to those based on algebraic polynomial spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Biswas, R., Devine, K.D., Flaherty, J.: Parallel, adaptive finite element methods for conservation laws. Appl. Numer. Math. 14, 255–283 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Burbeau, A., Sagaut, P., Bruneau, C.H.: A problem-independent limiter for high-order Runge-Kutta discontinuous Galerkin methods. J. Comput. Phys. 169, 111–150 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Christofi, S.: The study of building blocks for essentially non-oscillatory (ENO) schemes. Ph.D. thesis, Division of Applied Mathematics, Brown University (1996)

  4. Cockburn, B., Hou, S., Shu, C.W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  5. Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cockburn, B., Shu, C.W.: The Runge-Kutta local projection P1-discontinuous Galerkin finite element method for scalar conservation laws. Modél. Math. Anal. Numér. 2AN(25), 337–361 (1991)

    MathSciNet  Google Scholar 

  7. Cockburn, B., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  8. Cockburn, B., Shu, C.W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Harten, A., Osher, S.: Uniformly high-order accurate non-oscillatory schemes. IMRC Technical Summary Report 2823, Univ. of Wisconsin, Madison, WI (1985)

  11. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Qiu, J., Shu, C.W.: Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one dimensional case. J. Comput. Phys. 193, 115–135 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Qiu, J., Shu, C.W.: Runge-Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26, 907–929 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Qiu, J., Shu, C.W.: Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: two-dimensional case. Comput. Fluids 34, 642–663 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Reed, W.H., Hill, T.R.: Triangular mesh methods for neutron transport equation. Tech. Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)

  17. Shi, J., Hu, C., Shu, C.W.: A technique of treating negative weights in WENO schemes. J. Comput. Phys. 175, 108–127 (2002)

    Article  MATH  Google Scholar 

  18. Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. ICASE Report 97-65

  19. Shu, C.W.: TVB uniformly high-order schemes for conservation laws. Math. Comput. 49, 105–121 (1987)

    Article  MATH  Google Scholar 

  20. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yuan, L., Shu, C.W.: Discontinuous Galerkin method based on non-polynomial approximation spaces. J. Comput. Phys. 218, 295–323 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yuan, L., Shu, C.W.: Discontinuous Galerkin method for a class of elliptic multi-scale problems. Int. J. Numer. Methods Fluids 56, 1017–1032 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhu, J., Qiu, J.: A class of the fourth order finite volume Hermite weighted essentially non-oscillatory schemes. Sci. China Ser. A 51, 1549–1560 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhu, J., Qiu, J.: Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method III: unstructured meshes. J. Sci. Comput. 39, 293–321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhu, J., Qiu, J.: Trigonometric WENO schemes for hyperbolic conservation laws and highly oscillatory problems. Commun. Comput. Phys. 8, 1242–1263 (2010)

    MathSciNet  Google Scholar 

  26. Zhu, J., Qiu, J., Shu, C.W., Dumbser, M.: Runge-Kutta discontinuous Galerkin method using WENO limiters II: unstructured meshes. J. Comput. Phys. 227, 4330–4353 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxian Qiu.

Additional information

The research was partially supported by NSFC grant No. 10931004, 11002071 and ISTCP of China Grant No. 2010DFR00700.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J., Qiu, J. WENO Schemes and Their Application as Limiters for RKDG Methods Based on Trigonometric Approximation Spaces. J Sci Comput 55, 606–644 (2013). https://doi.org/10.1007/s10915-012-9649-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9649-9

Keywords

Navigation