iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s10898-004-8266-z
A Smoothing Newton Method for Semi-Infinite Programming | Journal of Global Optimization Skip to main content
Log in

A Smoothing Newton Method for Semi-Infinite Programming

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper is concerned with numerical methods for solving a semi-infinite programming problem. We reformulate the equations and nonlinear complementarity conditions of the first order optimality condition of the problem into a system of semismooth equations. By using a perturbed Fischer–Burmeister function, we develop a smoothing Newton method for solving this system of semismooth equations. An advantage of the proposed method is that at each iteration, only a system of linear equations is solved. We prove that under standard assumptions, the iterate sequence generated by the smoothing Newton method converges superlinearly/quadratically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, X., Qi L. and Sun, D. (1998), Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities, Mathematics of Computation 67, 519-540.

    Article  Google Scholar 

  2. Clarke, F.H. (1983), Optimization and Nonsmooth Analysis, Wiley, New York.

    Google Scholar 

  3. Coope, I.D. and Watson, G.A. (1985), A projected Lagrangian algorithm for semi-infinite programming, Mathematical Programming 32, 337-356.

    Article  Google Scholar 

  4. Coope, I.D. and Price, C.J. (1998), Exact penalty function methods for nonlinear semi-infinite programming. In: Reemtsen, R.and Rückmann, J. (eds.), Semi-Infinite Programming, Kluwer Academic Publishers, Boston, pp. 137-157.

    Google Scholar 

  5. De Luca, T., Facchinei, F. and Kanzow, C. (1996), A semismooth equation approach to the solution of nonlinear complementarity problems, Mathematical Programming 75, 407-439.

    Article  Google Scholar 

  6. Fischer, A. (1997), Solution of monotone complementarity problems with locally Lipschitzian functions, Mathematical Programming 76, 513-532.

    Google Scholar 

  7. Fukushima, M. and Qi, L. (1998), Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, Kluwer Academic Publishers, Boston, MA.

    Google Scholar 

  8. Gramlich, G., Hettich, R. and Sachs, E.(1995), Sqp-methods in semi-infinite programming, SIAM Journal on Optimization 5, 641-658.

    Article  Google Scholar 

  9. Hettich, R. and Jongen, H. Th. (1978), Semi-infinite programming: conditions of optimality and applications, Lecture Notes in Control and Information Sciences 7, 1-11.

    Article  Google Scholar 

  10. Hettich, R. and Kortanek, K. (1993), Semi-infinite programming: theory, methods and applications, SIAM Review 35, 380-429.

    Article  Google Scholar 

  11. Janin, R. (1984), Direction derivative of the marginal function in nonlinear programming, Mathematical Programming Study 21, 127-138.

    Google Scholar 

  12. Kanzow, C. and Pieper, H. (1999), Jacobian smoothing methods for general complementarity problems, SIAM Journal on Optimization 9, 342-373.

    Article  Google Scholar 

  13. C.T. Lawrence and Tits, A.L. (1998), Feasible sequential quadratic programming for finely discretized problems from SIP. In: Reemtsen, R.and Rückmann, J. (eds.), Semi-Infinite Programming, Kluwer Academic Publishers, Boston, pp. 159-193.

    Google Scholar 

  14. Li, D.H. and Fukushima, M. (2000), Smoothing Newton and quasi-Newton methods for mixed complementarity problems, Computational Optimization and Applications 17, 203-230.

    Article  Google Scholar 

  15. Mangasarian, O.L. (1969), Nonlinear Programming, McGraw-Hill, New York.

    Google Scholar 

  16. Pang, J.-S. and Qi, L. (1993), Nonsmooth equations: Motivation and algorithms, SIAM Journal on Optimization 3, 443-465.

    Article  Google Scholar 

  17. Polak, E. (1997), Optimization: Algorithms and Consistent Approximation, Springer, New York.

    Google Scholar 

  18. Polak, E. and Tits, A. (1982), A recursive quadratic programming algorithm for semi-infinite optimization problems, Applied Mathematics and Optimization 8, 325-349.

    Article  Google Scholar 

  19. Qi, L.(1993), Convergence analysis of some algorithms for solving nonsmooth equations, Mathematics of Operations Research 18, 227-244.

    Google Scholar 

  20. Qi, L. and Chen, X. (1995), A globally convergent successive approximation method for several nonsmooth equations, SIAM Journal on Control and Optimization 33, 402-418.

    Article  Google Scholar 

  21. Qi, L. (1999), Regular pseudo-smooth NCP and BVIP functions and globally and quadratically convergent generalized Newton methods for complementarity and variational inequality problems, Mathematics of Operations Research 24, 440-471.

    Article  Google Scholar 

  22. Qi, L. and Jiang, H. (1997), Semismooth Karush-Kuhn-Tucker equations and convergence analysis of Newton methods and quasi-Newton methods for solving these equations, Mathematics of Operations Research 22, 301-325.

    Article  Google Scholar 

  23. Qi, L. and Sun, D. (1999), A survey of some nonsmooth equations and smoothing Newton methods, in Eberhard, A., Glover, B., Hill, R. and Ralph, D. (eds.), Progress in Optimization: Contributions from Australasia, Kluwer Academic Publishers, Boston, 121-146.

    Google Scholar 

  24. Qi, L., Sun, D. and Zhou, G. (2000), A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities, Mathematical Programming 87, 1-35.

    Google Scholar 

  25. Qi, L. and Sun, J. (1993), A nonsmooth version of Newton’s method, Mathematical Programming 58, 353-367.

    Article  Google Scholar 

  26. Qi, L. and Wei, Z. (2000), On the constant positive linear dependence condition and its applications to SQP methods, SIAM Journal on Optimization 10, 963-981 Corrigendum, SIAM Journal on Optimization 11 (2001) 1145-1146.

    Article  Google Scholar 

  27. Qi, L., Wu, S.-Y.and Zhou, G., Semismooth Newton for solving semi-infinite programming problems, to appear in: Journal of Global Optimization.

  28. Reemtsen, R. and Görner, S. (1998), Numerical methods for semi-infinite programming: a survey. In Reemtsen, R. and Göckmann, J. (eds.), Semi-Infinite Programming, Kluwer Academic Publishers, Boston, MA, pp. 195-275.

    Google Scholar 

  29. Reemsten, R. and Rückmann, J. (1998), Semi-Infinite Programming, Kluwer Academic Publishers, Boston, MA.

    Google Scholar 

  30. Rückmann, J.J. and Shapiro, A. (2001), Second-order optimality conditions in generalized semi-infinite programming, Set-Valued Analysis 9, 169-186.

    Article  Google Scholar 

  31. Shapiro, A.(1998), First and second order optimality conditions and perturbation analysis of semi-infinite programming problems. In: Reemsten, R. and Rückmann, J. (eds.), Semi-Infinite Programming, Kluwer Academic Publishers, Boston, MA, pp. 103-133.

  32. Tanaka, Y., Fukushima, M. and Ibaraki, T. (1988), A globally convergent SQP method for semi-infinite nonlinear optimization, Journal of Computational and Applied Mathematics 23, 141-153.

    Article  Google Scholar 

  33. Teo, K.L., Yang, X.Q. and Jennings, L.S. (2000), Computational discretization algorithms for functional inequality constrained optimization, Annals of Operations Research 98, 215-234.

    Article  Google Scholar 

  34. Vo, B., Cantoni, A. and Teo, K.L. (1997), Envelope constrained filter with linear interpolator, IEEE Transactions on Signal Processing 45, 1405-1414.

    Article  Google Scholar 

  35. Watson, G.A. (1981), Globally convergent methods for semi-infinite programming, BIT 21, 362-373.

    Article  Google Scholar 

  36. Xiu, N. and Zhang, J. (2001), A smoothing Gauss-Newton method for the generalized HLCP, Journal of Computational and Applied Mathematics 129, 195-208.

    Article  Google Scholar 

  37. Yamashita, N. and Fukushima, M. (1997), Modified Newton methods for solving semismooth reformulations of monotone complementarity problems, Mathematical Programming 76, 469-491.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, DH., Qi, L., Tam, J. et al. A Smoothing Newton Method for Semi-Infinite Programming. J Glob Optim 30, 169–194 (2004). https://doi.org/10.1007/s10898-004-8266-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-004-8266-z

Navigation