Abstract
In this paper, we first give the definition of randomized time-varying knapsack problems (\(\textit{RTVKP}\)) and its mathematic model, and analyze the character about the various forms of \(\textit{RTVKP}\). Next, we propose three algorithms for \(\textit{RTVKP}\): (1) an exact algorithm with pseudo-polynomial time based on dynamic programming; (2) a 2-approximation algorithm for \(\textit{RTVKP}\) based on greedy algorithm; (3) a heuristic algorithm by using elitists model based on genetic algorithms. Finally, we advance an evaluation criterion for the algorithm which is used for solving dynamic combinational optimization problems, and analyze the virtue and shortage of three algorithms above by using the criterion. For the given three instances of \(\textit{RTVKP}\), the simulation computation results coincide with the theory analysis.
Similar content being viewed by others
References
Ashlock D (2006) Evolutionary computation for modeling and optimization. Springer, Berlin
Bansal JC, Deep K (2012) A modified binary particle swarm optimization for knapsack problems. Appl Math Comput 218(22):11042–11061
Brassard G, Bratley P (2003) Fundamentals of algorithmics. Prentice Hall, Inc., London
Cormen TH, Leiserson CE, Rivest RL et al (2001) Introduction to algorithms, 2nd edn. MIT Press, Cambridge, pp 370–399
Das S, Suganthan PN (2011) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15(1):4–31
Dorigo M, Caro G (1999) The ant colony optimization meta-heuristic. In: Corne D, Dorigo M, Glover F (eds) New ideas in optimization. McGraw Hill, London, pp 11–32
Du D-Z, Ko K-I (2000) Theory of computational complexity. Wiley-Interscience, New York
Du D-Z, Ko K-I, Hu X (2012) Design and analysis of approximation algorithms. Springer Science Business Media LLC, Berlin
Eiben AE, Arts EH, Van Hee KM (1991) Global convergence of genetic algorithm: an infinite Markov chain analysis. In: Schwefel HP, Manner R (eds) Parallel solving from nature (PPSN1). Springer, Berlin, pp 4–12
Elsayed SM, Sarker RA, Essam DL (2014) A new genetic algorithm for solving optimization problems. Eng Appl Artif Intell 27:57–69
Ezziane Z (2002) Solving the 0/1 knapsack problem using an adaptive genetic algorithm. Artif Intell Eng Des Anal Manuf 16(1):23–30
Eusuff MM, Lansey KE (2003) Optimization of water distribution network design using the shuffled frog-leaping algorithm. J Water Resour Plan Manag 129(3):210–225
Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68
Goldberg DE, Smith RE (1987) Nonstationary function optimization using genetic algorithms with dominance and diploidy. In: International conference on genetic algorithms. L. Erlbaum Associates Inc, Hillsdale, pp 59–68
Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Boston
Gottlieb J, Marchiori E, Rossi C (2002) Evolutionary algorithms for the satisfiability problem. Evol Comput 10(1):35–50
Hembecker F, Lopes HS (2007) Godoy Jr W (2007) Particle swarm optimization for the multidimensional knapsack problem. In: Adaptive and natural computing algorithms, lecture notes in computer science vol 4431, pp 358–365
Holland JH (1975) Adaptation in natural and artificial systems. The University of Michigan Press, Ann Arbor
Jun S, Jian L (2009) Solving 0-1 knapsack Problems via a hybrid differential evolution. In: Third international symposium on intelligent information technology application vol 3. IITA, pp 134–137
Kang L, Zhou A, Bob M et al. (2004) Benchmarking algorithms for dynamic travelling salesman problems. In: The congress on evolutionary computation. Portland, Oregon
Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks (Perth), vol IV. IEEE Service Center, Piscataway, NJ, pp 1942–1948
Krishnakumar K (1989) Micro-genetic algorithms for stationary and non-stationary function optimization. In: SPIE intelligent control and adaptive systems, pp 289–296
Kumar R, Banerjeec N (2006) Analysis of a multiobjective evolutionary algorithm on the 0-1 knapsack problem. Theor Comput Sci 358(1):104–120
Lee J, Shragowitz E, Sahni S (1988) A hypercube algorithm for the 0/1 knapsack problem. J Parallel Distrib Comput 5(4):438–456
Li C, Yang M, Kang L (2006) A new approach to solving dynamic traveling salesman problems. In: Simulated evolution and learning, lecture notes in computer science vol 4247, pp 236–243
Li X, Yao X (2012) Cooperatively coevolving particle swarms for large scale optimization. IEEE Trans Evol Comput 16(2):210–224
Liao Y-F, Yau D-H, Chen C-L (2012) Evolutionary algorithm to traveling salesman problems. Comput Math Appl 64(5):788–797
Man KF, Tang KS, Kwong S (1996) Genetic algorithms: concepts and applications. IEEE Trans Ind Electron 43(5):519–534
Mori N, Kita H, Nishikawa Y (1996) Adaptation to a changing environment by means of the thermodynamical genetic algorithm vol 1141 of LNCS. Springer, Berlin, pp 513–522
Rudolph G (1994) Convergence analysis of canonical genetic algorithms. IEEE Trans Neural Netw 5(1):86–101
Ryan C (1997) Diploidy without dominance. In: Alander JT (ed) Third nordic workshop on genetic algorithms, pp 63–70
Simon D (2013) Evolutionary optimization algorithms. Wiley, New York
Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359
Tsai H-K, Yang J-M, Tsai Y-F et al (2004) An evolutionary algorithm for large traveling salesman problems. IEEE Trans Syst Man Cybern Part B 34(4):1718–1729
Uyar AS, Harmanci AE (2005) A new population based adaptive domination change mechanism for diploid genetic algorithms in dynamic environments. Soft Comput 9(11):803–814
Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102
Yuen SY, Chow CK (2009) A genetic algorithm that adaptively mutates and never revisits. IEEE Trans Evol Comput 13(2):454–472
Acknowledgments
Support in part by NSF of China (No. 11271257), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20121303110005), the NSF of Hebei Province (No. A2013205021).
Author information
Authors and Affiliations
Corresponding author
Appendix: Three large-scale instances of \(fixRTVKP\)
Appendix: Three large-scale instances of \(fixRTVKP\)
For describing the instance of \(fixRTVKP\) succinctly, after sub-problem 0-1 \(KP(n, C_{i-1}, V_{i-1}, W_{i-1})\) changed to sub-problem 0-1 \(KP(n, C_i, V_i, W_i)\), let \((V_i\bigcup W_i)\setminus (V_{i-1}\bigcup W_{i-1})=\{V(l_k,w_k)| 1\le k\le N_1\}\bigcup \{W(l_j,w_j)|1\le j\le N_2\}\), where \(N_1+N_2 \le Threshold, V(l_k,v_k)\) represent that the profit of \(l_k\mathrm{th}\) item of sub-problem 0-1 \(KP_{i-1} (n, C_{i-1}, V_{i-1}, W_{i-1})\) has changed to \(v_k\) in sub-problem 0-1 \(KP_i (n, C_i, V_i, W_i). W(l_j,w_j)\) represent that the weight of \(l_j\mathrm{th}\) item of sub-problem 0-1 \(KP_{i-1} (n, C_{i-1}, V_{i-1}, W_{i-1})\) has changed to \(w_j\) in sub-problem 0-1 \(KP_i (n, C_i, V_i, W_i)\).
Instance 1 of \(fixRTVKP\).
Initial profit set of items is \(V_0[1\ldots 50]=\{\)220, 208, 198, 192, 180, 180, 165, 162, 160, 158, 155, 130, 125, 122, 120, 118, 115, 110, 105, 101, 100, 100, 98, 96, 95, 90, 88, 82, 80, 77, 75, 73, 72, 70, 69, 66, 65, 63, 60, 58, 56, 50, 30, 20, 15, 10, 8, 5, 3, 1\(\}\).
Initial weight set of items is \(W_0[1\ldots 50]=\{\)80, 82, 85, 70, 72, 70, 66, 50, 55, 25, 50, 55, 40, 48, 50, 32, 22, 60, 30, 32, 40, 38, 35, 32, 25, 28, 30, 22, 50, 30, 45, 30, 60, 50, 20, 65, 20, 25, 30, 10, 20, 25, 15, 10, 10, 10, 4, 4, 2, 1\(\}\).
Initial knapsack capacity is \(C_0=1000\).
The random variation period is 2 s, and \([A_v, B_v]=[1, 225], [A_w, B_w]=[1, 87], [A_c, B_c]=[930,1395]\).
The number of subproblems is \(m=10\), and \(Threshold\le 10\).
The random oscillation change of profit, weight of items and knapsack capacity are following:
\(C_1=1220, C_2=1000, C_3=1341, C_4=1285, C_5=1285, C_6=931, C_7=1119, C_8=947, C_9=1043\).
\((V_1\bigcup W_1)\setminus (V_0\bigcup W_0)=\{W\)(18,71), \(W\)(20,65), \(V\)(9,188), \(W\)(6,45), \(W\)(28,44), \(W\)(46,24), \(V\)(37,217), \(W\)(3,67), \(W\)(33,22), \(V\)(19,96)\(\}\).
\((V_2\bigcup W_2)\setminus (V_1\bigcup W_1)=\{W\)(39,43), \(W\)(18,26), \(W\)(45,81), \(W\)(23,58), \(W\)(15,4), \(W\)(4,83), \(V\)(45,38), \(V\)(38,35), \(W\)(42,38), \(V\)(17,111)\(\}\).
\((V_3\bigcup W_3)\setminus (V_2\bigcup W_2)=\{W\)(39,5), \(W\)(43,38), \(V\)(47,181), \(W\)(30,11), \(W\)(7,43), \(W\)(49,55), \(W\)(35,32), \(V\)(41,17), \(V\)(32,209), \(W\)(40,6)\(\}\).
\((V_4\bigcup W_4)\setminus (V_3\bigcup W_3)=\{V\)(19,58), \(V\)(42,109), \(W\)(40,79), \(W\)(31,58), \(W\)(46,42), \(W\)(21,1), \(V\)(24,148), \(W\)(37,84)\(\}\).
\((V_5\bigcup W_5)\setminus (V_4\bigcup W_4)=\{W\)(32,47), \(W\)(1,64), \(W\)(17,38), \(V\)(42,8), \(V\)(8,138), \(W\)(34,69), \(V\)(10,84), \(W\)(39,72), \(V\)(7,206), \(W\)(19,31)\(\}\).
\((V_6\bigcup W_6)\setminus (V_5\bigcup W_5)=\{W\)(6,11), \(V\)(25,63), \(V\)(34,146), \(W\)(3,78), \(W\)(37,66), \(W\)(47,10), \(V\)(50,94), \(W\)(32,37), \(W\)(50,58), \(V\)(1,189)\(\}\).
\((V_7\bigcup W_7)\setminus (V_6\bigcup W_6)=\{V\)(44,124), \(W\)(8,73), \(W\)(18,20), \(W\)(10,48), \(W\)(2,69), \(V\)(20,57), \(V\)(4,150), \(V\)(45,210), \(V\)(3,46), \(W\)(44,76)\(\}\).
\((V_8\bigcup W_8)\setminus (V_7\bigcup W_7)=\{W\)(4,54), \(W\)(9,7), \(W\)(47,9), \(W\)(40,6), \(V\)(8,223), \(V\)(30,191), \(V\)(9,117), \(W\)(39,17), \(W\)(3,25)\(\}\).
\((V_9\bigcup W_9)\setminus (V_8\bigcup W_8)=\{V\)(47,38), \(V\)(26,84), \(V\)(43,220), \(V\)(32,49), \(W\)(2,17), \(V\)(8,127), \(W\)(40,30), \(W\)(1,75), \(W\)(20,27), \(V\)(2,115)\(\}\).
Instance 2 of \(fixRTVKP\).
Initial profit set of items is \(V_0[1\ldots 100]=\{\)117, 113, 113, 113, 112, 112, 112, 112, 112, 111, 110, 110, 109, 109, 108, 108, 108, 108, 108, 108, 108, 107, 106, 106, 105, 105, 105, 105, 104, 103, 102, 102, 102, 101, 101, 101, 101, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 94, 94, 94, 94, 94, 93, 93, 93, 92, 92, 92, 91, 91, 91, 90, 90, 89, 89, 88, 88, 87, 87\(\}\).
Initial weight set of items is \(W_0[1\ldots 100]=\{\)108, 98, 95, 107, 98, 100, 96, 105, 93, 112, 95, 105, 91, 96, 100, 103, 91, 96, 105, 90, 101, 110, 108, 95, 99, 96, 108, 101, 102, 100, 111, 88, 99, 112, 101, 105, 94, 113, 87, 101, 108, 96, 91, 89, 102, 99, 98, 93, 98, 99, 106, 112, 90, 100, 92, 94, 98, 97, 99, 95, 112, 108, 100, 98, 117, 98, 100, 98, 99, 113, 94, 111, 102, 99, 97, 87, 97, 103, 97, 89, 96, 94, 93, 104, 92, 109, 97, 109, 100, 88, 92, 108, 97, 106, 97, 97, 99, 94, 102, 95\(\}\).
Initial knapsack capacity is \(C_0=4995\).
The random variation period is 4 s, and \([A_v,B_v]=[71,121],[A_w,B_w]=[75,127],[A_c,B_c]=[4979,6971]\).
The number of subproblems is \(m=10\),and \(Threshold\le 20\).
The random oscillation change of profit,weight of items and knapsack capacity are following:
\(C_1=6021,C_2=5411,C_3=5900,C_4=6525,C_5=5102,C_6=5698,C_7=6058,C_8=4997,C_9=6414\).
\((V_1\bigcup W_1)\setminus (V_0\bigcup W_0)=\{W\)(68,102), \(W\)(70,111), \(V\)(59,105), \(W\)(6,77), \(W\)(28,125), \(W\)(96,92), \(V\)(37,77), \(W\)(3,122), \(W\)(83,112), \(V\)(19,76), \(V\)(27,103), \(V\)(70,93), \(V\)(100,72), \(W\)(4,89), \(W\)(34,99), \(W\)(42,101), \(W\)(69,76), \(W\)(63,78), \(V\)(60,73), \(W\)(30,111)\(\}\)
\((V_2\bigcup W_2)\setminus (V_1\bigcup W_1)=\{W\)(43,98), \(V\)(41,88), \(W\)(49,120), \(W\)(91,126), \(W\)(51,82), \(W\)(94,125), \(W\)(57,96), \(V\)(77,79), \(V\)(45,74), \(V\)(24,100), \(V\)(19,113), \(V\)(42,110), \(W\)(40,106), \(W\)(31,113), \(W\)(46,75), \(W\)(71,127), \(V\)(74,110), \(V\)(91,103)\(\}\)
\((V_3\bigcup W_3)\setminus (V_2\bigcup W_2)=\{V\)(56,90), \(W\)(53,77), \(W\)(42,122), \(W\)(8,123), \(V\)(88,80), \(W\)(46,80), \(V\)(59,118), \(V\)(23,78), \(V\)(31,113), \(V\)(1,73), \(W\)(56,101), \(V\)(25,106), \(V\)(84,75), \(W\)(3,98), \(W\)(37,121), \(W\)(97,87), \(V\)(100,104), \(W\)(82,92), \(W\)(100,99)\(\}\)
\((V_4\bigcup W_4)\setminus (V_3\bigcup W_3)=\{V\)(28,79), \(V\)(94,86), \(W\)(8,111), \(W\)(18,98), \(W\)(1,77), \(V\)(57,72), \(W\)(25,112), \(W\)(10,118), \(W\)(96,102), \(W\)(44,123), \(V\)(15,88), \(V\)(1,116), \(V\)(81,79), \(V\)(82,76), \(V\)(10,96), \(W\)(23,116), \(W\)(39,86), \(W\)(58,83), \(W\)(16,120)\(\}\) \((V_5\bigcup W_5)\setminus (V_4\bigcup W_4)=\{W\)(35,126), \(W\)(29,90), \(W\)(87,82), \(W\)(17,120), \(V\)(23,107), \(W\)(100,81), \(V\)(93,82), \(W\)(13,78), \(W\)(4,126), \(V\)(56,72), \(W\)(86,89), \(W\)(89,125), \(V\)(58,111), \(W\)(70,109), \(W\)(90,123), \(V\)(69,101), \(W\)(56,117), \(V\)(42,97)\(\}\)
\((V_6\bigcup W_6)\setminus (V_5\bigcup W_5)=\{V\)(54,94), \(W\)(80,101), \(V\)(30,78), \(V\)(67,117), \(W\)(96,86), \(V\)(87,111), \(V\)(83,82), \(W\)(15,116), \(V\)(72,94), \(W\)(14, 103), \(W\)(54,86), \(V\)(33,106), \(W\)(57,94), \(V\)(47,105), \(W\)(45,110), \(W\)(30,116), \(W\)(51,118), \(V\)(45,106), \(W\)(40,103), \(W\)(55,117)\(\}\)
\((V_7\bigcup W_7)\setminus (V_6\bigcup W_6)=\{V\)(14,108), \(W\)(69,101), \(V\)(6,77), \(W\)(3,96), \(V\)(15,103), \(W\)(35,85), \(W\)(60,89), \(V\)(78,96), \(W\)(64,93), \(W\)(86,103), \(W\)(14,123), \(W\)(100,127), \(W\)(44,91), \(W\)(73,98), \(W\)(4,106), \(W\)(94,116), \(W\)(93,111), \(W\)(87,101), \(W\)(88,114)\(\}\)
\((V_8\bigcup W_8)\setminus (V_7\bigcup W_7)=\{W\)(71,98), \(W\)(12,77), \(V\)(68,114), \(W\)(41,95), \(W\)(25,110), \(W\)(77,92), \(V\)(3,102), \(V\)(79,71), \(W\)(85,86), \(W\)(20, 119), \(W\)(88,77), \(V\)(11,85), \(W\)(16,111), \(V\)(44,83), \(W\)(10,113), \(V\)(66,90), \(V\)(75,96), \(V\)(29,96), \(W\)(3,91), \(W\)(97,102)\(\}\)
\((V_9\bigcup W_9)\setminus (V_8\bigcup W_8)=\{W\)(26,120), \(W\)(3,82), \(W\)(27,95), \(W\)(12,76), \(W\)(21,79), \(W\)(89,108), \(W\)(52,81), \(V\)(1,87), \(V\)(79,72), \(V\)(78,98), \(V\)(40,79), \(W\)(58,120), \(V\)(9,121), \(V\)(2,73), \(W\)(29,83), \(W\)(6,96), \(W\)(5,84), \(V\)(73,75), \(W\)(57,77), \(V\)(58,80)\(\}\)
Instance 3 of \(fixRTVKP\).
Initial profit set of items is \(V_0[1\ldots 300]=\{\)383, 519, 420, 272, 166, 125, 354, 374, 44, 540, 9, 108, 13, 4, 403, 376, 599, 432, 184, 439, 114, 45, 333, 238, 95, 10, 195, 542, 231, 476, 129, 582, 223, 210, 442, 250, 116, 211, 342, 461, 300, 368, 327, 524, 460, 158, 171, 261, 24, 89, 174, 214, 455, 87, 222, 588, 25, 453, 256, 458, 375, 129, 104, 428, 344, 165, 556, 166, 359, 440, 373, 210, 576, 14, 548, 105, 396, 116, 243, 196, 583, 307, 141, 345, 544, 500, 250, 280, 449, 388, 107, 135, 182, 235, 521, 480, 48, 272, 17, 190, 122, 6, 380, 226, 243, 567, 513, 444, 469, 567, 86, 520, 573, 125, 494, 123, 30, 276, 288, 219, 191, 91, 531, 382, 508, 541, 574, 568, 111, 581, 452, 351, 74, 411, 239, 513, 39, 43, 213, 484, 189, 314, 240, 25, 253, 430, 239, 494, 71, 296, 568, 359, 460, 242, 307, 186, 366, 215, 347, 240, 386, 178, 510, 118, 487, 468, 116, 376, 136, 593, 500, 514, 294, 508, 514, 322, 164, 544, 20, 224, 408, 436, 418, 234, 102, 558, 452, 362, 527, 240, 288, 179, 544, 174, 498, 370, 325, 521, 543, 248, 341, 516, 49, 440, 319, 346, 551, 454, 587, 374, 29, 511, 424, 419, 127, 471, 596, 385, 578, 148, 28, 421, 542, 358, 108, 538, 143, 405, 59, 267, 300, 458, 140, 383, 364, 445, 424, 488, 42, 65, 179, 303, 435, 370, 304, 584, 277, 82, 33, 77, 382, 434, 438, 232, 169, 160, 390, 24, 340, 332, 541, 91, 574, 318, 317, 577, 356, 332, 237, 172, 415, 489, 444, 102, 46, 406, 122, 269, 18, 296, 516, 42, 490, 107, 109, 294, 391, 164, 162, 438, 518, 122, 290, 504, 448, 408, 205, 266, 390, 470\(\}, \)
Initial weight set of items is \(W_0[1\ldots 300]=\{\)653, 11, 543, 649, 278, 173, 879, 796, 710, 840, 238, 280, 844, 886, 522, 30, 982, 754, 182, 163, 155, 969, 766, 433, 710, 888, 802, 295, 386, 985, 8, 152, 483, 828, 488, 685, 373, 44, 117, 599, 369, 619, 543, 902, 177, 655, 842, 257, 945, 684, 238, 512, 570, 507, 516, 557, 27, 839, 566, 613, 612, 524, 456, 82, 485, 810, 492, 889, 729, 636, 263, 645, 191, 45, 109, 937, 688, 42, 634, 890, 431, 34, 291, 916, 478, 173, 258, 977, 443, 920, 643, 87, 91, 565, 822, 374, 438, 421, 759, 246, 791, 420, 714, 546, 134, 238, 173, 874, 904, 71, 624, 150, 778, 378, 607, 576, 686, 547, 249, 120, 483, 563, 733, 217, 108, 645, 898, 861, 646, 751, 422, 165, 528, 288, 590, 342, 683, 147, 495, 32, 676, 192, 464, 480, 853, 322, 978, 914, 126, 637, 673, 634, 194, 29, 659, 735, 477, 726, 996, 201, 336, 515, 533, 483, 434, 956, 139, 95, 448, 140, 362, 150, 777, 480, 731, 549, 49, 492, 324, 977, 252, 72, 837, 198, 746, 600, 770, 195, 736, 197, 956, 74, 464, 853, 273, 659, 926, 571, 527, 495, 563, 216, 784, 396, 510, 35, 926, 253, 877, 740, 85, 839, 447, 108, 575, 912, 639, 985, 738, 774, 948, 66, 544, 789, 905, 331, 347, 980, 951, 699, 653, 854, 488, 594, 99, 161, 698, 579, 476, 712, 782, 545, 29, 996, 818, 225, 44, 501, 93, 319, 565, 80, 101, 173, 846, 279, 264, 338, 784, 356, 976, 733, 536, 911, 607, 722, 167, 862, 93, 263, 334, 471, 727, 808, 648, 973, 396, 730, 927, 118, 455, 559, 771, 538, 306, 378, 478, 698, 469, 490, 140, 121, 396, 292, 722, 431, 830, 472, 174, 541\(\}\).
Initial knapsack capacity is \(C_0=84340\).
The random variation period is 8 s, and \([A_v,B_v]=[3,600],[A_w,B_w]=[3,998],[A_c,B_c]=[81750,117564]\).
The number of subproblems is \(m=10\), and \(Threshold\le 40\).
The random oscillation change of profit, weight of items and knapsack capacity are following:
\(C_1=95040,C_2=111407,C_3=103409,C_4=107377,C_5=113684,C_6=83289,C_7=112588,C_8=103113,C_9=91317\).
\((V_1\bigcup W_1)\setminus (V_0\bigcup W_0)=\{W\)(168,361), \(W\)(270,787), \(W\)(6,260), \(W\)(28,4), \(W\)(296,989), \(V\)(37,102), \(W\)(3,156), \(W\)(83,492), \(V\)(219,164), \(V\)(127,422), \(V\)(70,181), \(V\)(200,294), \(W\)(204,906), \(W\)(142,742), \(W\)(269,650), \(W\)(263,888), \(V\)(260,354), \(W\)(230,781), \(V\)(36,67), \(W\)(289,229), \(W\)(243,343), \(V\)(147,486), \(W\)(7,228), \(W\)(249,708), \(W\)(85,37), \(V\)(141,185), \(V\)(132,597), \(W\)(40,725), \(W\)(138,625), \(V\)(283,208), \(W\)(34,242), \(V\)(259,581), \(W\)(178,317), \(W\)(187,44), \(W\)(225,151), \(W\)(130,884), \(W\)(298,579)\(\}\).
\((V_2\bigcup W_2)\setminus (V_1\bigcup W_1)=\{W\)(37,446), \(V\)(256,29), \(W\)(53,461), \(W\)(142,811), \(W\)(8,384), \(V\)(288,248), \(W\)(246,944), \(V\)(159,304), \(V\)(123,431), \(V\)(131,270),,\(W\)(156,481), \(V\)(25,208), \(V\)(184,90), \(W\)(3,449), \(W\)(237,413), \(W\)(97,120), \(V\)(100,535), \(W\)(182,753), \(W\)(200,525), \(V\)(168,143), \(W\)(49,574), \(V\)(22,559), \(V\)(14,547), \(V\)(117,400), \(V\)(57,77), \(W\)(225,55), \(W\)(210,52), \(W\)(196,568), \(W\)(244,646), \(V\)(215,536), \(V\)(1,305), \(V\)(181,65), \(V\)(282,456), \(V\)(110,250), \(W\)(223,613), \(W\)(39,278)\(\}\).
\((V_3\bigcup W_3)\setminus (V_2\bigcup W_2)=\{V\)(192,84), \(V\)(257,152), \(W\)(235,371), \(W\)(229,737), \(W\)(170,225), \(W\)(217,968), \(V\)(123,116), \(W\)(300,572), \(V\)(293,472), \(W\)(213,611), \(W\)(4,976), \(W\)(289,456), \(V\)(256,280), \(W\)(86,281), \(W\)(89,553), \(V\)(58,267), \(W\)(270,165), \(W\)(90,59), \(V\)(269,589),,\(V\)(242,545), \(W\)(61,805), \(W\)(240,474), \(V\)(197,544), \(V\)(50,196), \(W\)(298,499), \(V\)(206,571), \(W\)(156,837), \(W\)(2,443), \(W\)(87,314), \(W\)(56,312), \(W\)(13,851), \(W\)(246,332), \(V\)(122,425), \(V\)(83,484), \(W\)(97,305), \(V\)(62,156), \(W\)(74,509)\(\}\).
\((V_4\bigcup W_4)\setminus (V_3\bigcup W_3)=\{W\)(40,324), \(W\)(55,629), \(W\)(250,241), \(W\)(275,137), \(V\)(219,252), \(W\)(259,422), \(W\)(26,584), \(W\)(15,927), \(W\)(75,471), \(V\)(134,565), \(V\)(98,345), \(V\)(74,579), \(W\)(269,263), \(W\)(103,515), \(W\)(128,821), \(W\)(125,70), \(W\)(162,240), \(W\)(133,576), \(W\)(226,86), \(W\)(143,293), \(V\)(165,129), \(V\)(261,290), \(W\)(171,289), \(W\)(234,790), \(W\)(297,686), \(W\)(251,143), \(W\)(296,711), \(V\)(26,267), \(W\)(159,409), \(W\)(267,697), \(W\)(152,587), \(W\)(101,162), \(W\)(127,49), \(V\)(71,584), \(V\)(228,86), \(V\)(265,328), \(W\)(287,684), \(V\)(178,125)\(\}\).
\((V_5\bigcup W_5)\setminus (V_4\bigcup W_4)=\{V\)(129,310), \(W\)(3,25), \(W\)(296,656), \(V\)(231,595), \(W\)(172,438), \(V\)(154,593), \(W\)(225,311), \(W\)(141,934), \(W\)(30,27), \(W\)(59,649), \(W\)(108,524), \(W\)(259,466), \(W\)(161,436), \(W\)(178,131), \(W\)(188,880), \(W\)(61,519), \(W\)(85,484), \(W\)(212,819), \(W\)(257,99), \(W\)(224,544), \(V\)(117,433), \(V\)(127,204), \(V\)(172,550), \(W\)(297,77), \(V\)(213,162), \(V\)(186,124), \(W\)(130,328), \(W\)(260,967), \(V\)(156,96), \(W\)(285,853), \(W\)(173,544), \(V\)(33,574), \(V\)(84,316), \(W\)(168,939), \(W\)(39,234), \(W\)(55,538), \(W\)(76, 546), \(W\)(222,941)\(\}\).
\((V_6\bigcup W_6)\setminus (V_5\bigcup W_5)=\{W\)(284,945), \(V\)(80,578), \(W\)(135,644), \(W\)(157,4), \(V\)(206,387), \(V\)(282,303), \(W\)(142,934), \(W\)(243,509), \(W\)(278,507), \(V\)(253,506), \(V\)(74,475), \(W\)(276,155), \(V\)(11,422), \(W\)(213,818), \(V\)(132,309), \(V\)(186,555), \(V\)(190,279), \(W\)(154,393), \(W\)(41,135), \(V\)(36,390), \(W\)(106,367), \(W\)(4,844), \(W\)(209,411), \(V\)(150,257), \(W\)(128,494), \(W\)(30,367), \(W\)(75,684), \(V\)(116,314), \(W\)(293,822), \(W\)(29,142), \(W\)(176,861), \(V\)(71,310), \(V\)(205,506), \(W\)(164,729), \(W\)(11,262), \(V\)(241,207), \(W\)(120,996), \(W\)(105,945), \(W\)(151,308)\(\}\).
\((V_7\bigcup W_7)\setminus (V_6\bigcup W_6)=\{W\)(23,185), \(V\)(85,495), \(W\)(165,8), \(W\)(246,827), \(V\)(79,576), \(W\)(120,44), \(V\)(45,476), \(W\)(146,611), \(V\)(271,36), \(W\)(133,571), \(W\)(188,685), \(W\)(202,174), \(W\)(228,647), \(V\)(216,186), \(V\)(244,82), \(V\)(64,268), \(W\)(89,389), \(V\)(261,294), \(V\)(255,559), \(V\)(91,178), \(W\)(131,723), \(V\)(68,353), \(W\)(36,357), \(W\)(139,892), \(V\)(125,203), \(W\)(60,388), \(V\)(145,8), \(V\)(27,298), \(W\)(256,128), \(V\)(197,49), \(W\)(265,437), \(W\)(214,209), \(V\)(49,557), \(V\)(207,462), \(V\)(5,130), \(V\)(113,242), \(W\)(66,103), \(V\)(42,319), \(W\)(157,679)\(\}\).
\((V_8\bigcup W_8)\setminus (V_7\bigcup W_7)=\{W\)(231,912), \(W\)(212,768), \(V\)(191,457), \(W\)(35,936), \(W\)(117,507), \(V\)(63,110), \(W\)(104,701), \(W\)(157,151), \(W\)(18,232), \(V\)(29,499), \(W\)(19,925), \(W\)(156,488), \(W\)(204,691), \(W\)(210,961), \(W\)(290,51), \(W\)(154,797), \(W\)(3,950), \(W\)(170,893), \(V\)(109,496), \(W\)(4,36), \(W\)(105,443), \(W\)(114,725), \(V\)(123,559), \(V\)(111,368), \(W\)(209,4), \(V\)(194,322), \(V\)(38,168), \(V\)(1,220), \(W\)(118,282), \(W\)(16,405), \(V\)(213,587), \(W\)(155,152), \(W\)(185,873), \(W\)(116,686), \(W\)(99,168), \(V\)(278,195), \(V\)(190,402), \(V\)(42,245)\(\}\).
\((V_9\bigcup W_9)\setminus (V_8\bigcup W_8)=\{V\)(285,263), \(W\)(272,892), \(W\)(172,380), \(V\)(54,544), \(V\)(126,111), \(V\)(151,209), \(V\)(194,503), \(W\)(217,300), \(V\)(29,370), \(W\)(22,440), \(V\)(217,343), \(V\)(167,386), \(W\)(165,347), \(V\)(22,303), \(W\)(65,428), \(W\)(203,992), \(W\)(242,876), \(W\)(224,642), \(V\)(269,351), \(W\)(108,406), \(W\)(113,223), \(W\)(157,341), \(W\)(297,271), \(W\)(146,767), \(V\)(292,559), \(W\)(115,506), \(V\)(123,405), \(W\)(153,372), \(V\)(239,114), \(V\)(67,320), \(V\)(287,269), \(W\)(234,209), \(W\)(247,467), \(V\)(26,484), \(V\)(3,312), \(V\)(231,591), \(W\)(79,882), \(W\)(49,937), \(W\)(116,594)\(\}\).
Rights and permissions
About this article
Cite this article
He, Y., Zhang, X., Li, W. et al. Algorithms for randomized time-varying knapsack problems. J Comb Optim 31, 95–117 (2016). https://doi.org/10.1007/s10878-014-9717-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10878-014-9717-1