iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s10852-012-9181-9
Electrocardiogram Signal Compression Using Beta Wavelets | Journal of Mathematical Modelling and Algorithms in Operations Research Skip to main content
Log in

Electrocardiogram Signal Compression Using Beta Wavelets

  • Published:
Journal of Mathematical Modelling and Algorithms

Abstract

In this paper, a wavelet based methodology is presented for compression of electrocardiogram (ECG) signal. The methodology employs new wavelet filters whose coefficients are derived with beta function and its derivatives. A comparative study of performance of different existing wavelet filters and the Beta wavelet filters is made in terms of compression ratio (CR), percent root mean square difference (PRD), mean square error (MSE) and signal-to-noise ratio (SNR). When compared, the Beta wavelet filters give better compression ratio and also yields good fidelity parameters as compared to other wavelet filters. The simulation result included in this paper shows the clearly increased efficacy and performance in the field of biomedical signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afonso, V.X., Tompkins, W.J., Nguyen, T.Q., Luo, S.: ECG beat detection using filter banks. IEEE Trans. Biomed. Eng. 46, 192–202 (1999)

    Article  Google Scholar 

  2. Wang, X., Meng, J.A.: 2-D ECG compression algorithm based on wavelet transforms and vector quantization. Digit. Signal Process. 18, 179–188 (2008)

    Article  MathSciNet  Google Scholar 

  3. Addison, P.S.: Wavelet transform and the ECG: a review. Inst. Phys. Publish.- Physiol. Meas. 26(5), 155–199 (2005)

    Google Scholar 

  4. Rodrıgueza, M., Ayalaa, A., Rodrıgueza, S., Rosa, F., Dıaz-Gonzálezb, M.: Application of the max—Lloyd quantizer for ECG compression in diving mammals. Comput. Methods Programs Biomed. 73, 13–21 (2004)

    Article  Google Scholar 

  5. Ouamri, A., Naït-Ali, A.: ECG compression method using Lorentzian functions model. Digit. Signal Process. 17, 319–326 (2007)

    Article  Google Scholar 

  6. Kumar, V., Saxena, S.C., Giri, V.K., Dilbag, S.: Improved modified AZTEC technique for ECG data compression: effect of length of parabolic filter on reconstructed signal. Comput. Electr. Eng. 31, 334–344 (2005)

    Article  Google Scholar 

  7. Bouchehama, B., Ferdi, Y., Batouche, M.C.: Recursive versus sequential multiple error measures reduction: a curve simplification approach to ECG data compression. Comput. Methods Programs Biomed. 8, 162–173 (2006)

    Article  Google Scholar 

  8. Jalaleddine, S.M.S., Hutchens, C.G., Strattan, R.D., Coberly, W.A.: ECG data compression techniques: a unified approach. IEEE Trans. Biomed. Eng. 37(4), 329–343 (1990)

    Article  Google Scholar 

  9. Ole-Aase, S., Nygaard, R., Husoy, J.H.: A comparative study of some novel ECG data compression technique. In: IEEE Nordic Signal Processing Symposium (NORSIG’98), vol. 3, pp. 273–276 (1998)

  10. Chen, J., Wang, F., Zhang, Y., Shi, X.: ECG compression using uniform scalar dead-zone quantization and conditional entropy coding. Med. Eng. Phys. 30, 523–530 (2008)

    Article  Google Scholar 

  11. Tohumoglu, G., Sezgin, K.E.: ECG signal compression by multi-iteration EZWcoding for differentwavelets and thresholds. Comput. Biol. Med. 37, 173–182 (2007)

    Article  Google Scholar 

  12. Karczewicza, M., Gabboujb, M.: ECG data compression by spline approximation. Signal Process. 59, 43–59 (1997)

    Article  Google Scholar 

  13. Nave, G., Cohen, A.: ECG compression using long-term prediction. IEEE Trans. Biomed. Eng. 40, 877–885 (1993)

    Article  Google Scholar 

  14. Ramakrishna, A.G., Saha, S.: ECG coding by wavelet-based linear prediction. IEEE Trans. Biomed. Eng. 44(12), 1253–1261 (1997)

    Article  Google Scholar 

  15. Ahmeda, S.M., Abo-Zahhad, M.: A new hybrid algorithm for ECG signal compression based on the wavelet transformation of the linearly predicted error. Med. Eng. Phys. 23, 117–126 (2001)

    Article  Google Scholar 

  16. Al-Shroud, A., Abo-Zahhad, M., Ahmed, S.M.: A novel compression algorithm for electrocardiogram signals based on the linear prediction of the wavelet coefficients. Digit. Signal Process. 13, 604–622 (2003)

    Article  Google Scholar 

  17. Zigel, Y., Cohen, A., Katz, A.: Signal compression using analysis by synthesis coding. IEEE Trans. Biomed. Eng. 47(10), 1308–1316 (2000)

    Article  Google Scholar 

  18. Blanco-Velasco, M., Cruz-Roldán, F., Moreno-Martínez, E., Godino, J.I., Barner, K.E.: Embedded filter bank-based algorithm for ECG compression. Signal Process. 88(6), 1402–1412 (2008)

    Article  MATH  Google Scholar 

  19. Blanco-Velasco, M., Cruz-Roldán, F., Lopez-Ferreras, F., Bravo-Santos, A., Moreno-Martínez, E.: A low computational complexity algorithm for ECG signal compression. Med. Eng. Phys. 26, 553–568 (2004)

    Article  Google Scholar 

  20. Al-Nashash, H.A.M.: A dynamic fourier series for the compression of ECG using FFT and adaptive coefficient estimation. Med. Eng. Phys. 17, 197–203 (1995)

    Article  Google Scholar 

  21. Al-Hinai, N., Neville, K., Sadik, A.Z., Hussain, Z.M.: Compressed image transmission over FFT-OFDM: aComparative study. In: Australasian Telecommunication Networks and Applications Conference, pp. 465–469 (2007)

  22. Batista, L.V., Melcher, E., Carvalho, L.C.: Compression of ECG signals by optimized quantization of discrete cosine transform coefficients. Med. Eng. Phys. 23, 127–134 (2001)

    Article  Google Scholar 

  23. Aggarwal, V., Patterh, M.S.: Quality controlled ECG compression using Discrete Cosine Transform (DCT) and Laplacian Pyramid (LP). In: Multimedia, Signal Processing and Communication Technology, IMPACT 09, pp. 12–15 (2009)

  24. Benzid, R., Messaoudi, A., Boussaad, A.: Constrained ECG compression algorithm using the block-based discrete cosine transform. Digit. Signal Process. 18, 56–64 (2008)

    Article  Google Scholar 

  25. Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989)

    Article  MATH  Google Scholar 

  26. Rajoub, B.A.: An efficient coding algorithm for the compression of ECG signals using the wavelet transform. IEEE Trans. Biomed. Eng. 49, 355–362 (2002)

    Article  Google Scholar 

  27. Kim, B.S., Yoo, S.K., Lee, M.H.: Wavelet-based low-delay ECG compression algorithm for continuous ECG transmission. IEEE Trans. Inf. Technol. Biomed. 10, 77–83 (2006)

    Article  Google Scholar 

  28. Kumari, R.S.S., Sadasivam, V.: A novel algorithm for wavelet based ECG signal coding. Comput. Electr. Eng. 33, 186–194 (2007)

    Article  MATH  Google Scholar 

  29. Ahmed, S.M., Al-Shrouf, A., Abo-Zahhad, M.: ECG data compression using optimal non-orthogonal wavelet transform. Med. Eng. Phys. 22, 39–46 (2000)

    Article  Google Scholar 

  30. Hunga, K.C., Tsaia, F.C., Kub, T.H., Wanga, H.S.: A linear quality control design for high efficient wavelet-based ECG data compression. Comput. Methods Programs Biomed. 94(2), 109–117 (2009)

    Article  Google Scholar 

  31. Manikandan, M.S., Dandapat, S.: Wavelet threshold based ECG compression using USZZQ an Huffman coding of DSM. Biomed. Signal Process. Contr. 1(4), 261–270 (2006)

    Article  Google Scholar 

  32. De-Oliveira, H.M., Araujo, G.A.A.: Compactly supported one-cyclic wavelet derived from beta distribution. J. Commun. Inform. Syst. 20(3), 27–33 (2005)

    Google Scholar 

  33. Alimi, M.A.: The beta system: toward a change in our use of Neuro-fuzzy system. Int. J. Manag., Invited paper. No. June, 15–19 (2000)

  34. Alimi, M.A.: The beta-based neuro-fuzzy system: genesis and main properties. TASK Quart. J.- Special issue on ‘Neural Network’ 7(1), 23–41 (2003)

    Google Scholar 

  35. Aouiti, C., Alimi, M.A., Maalej, A.: Genetic designed beta basis function neural network for multivariable function approximation. Syst. Anal. Model. Simul.- Special issue on ‘Advance in Cont. and Computer Eng.’ 42(7), 975–1005 (2002)

    MATH  Google Scholar 

  36. Amar, B.C., Zaied, M., Alimi, M.A.: Beta wavelet synthesis and application to lossy image compression. Adv. Eng. Softw. 36, 459–474 (2005)

    Article  MATH  Google Scholar 

  37. Misiti, M., Misiti, Y., Oppenheim, G., Poggi, J.: Matlab Wavelet Tool Box. The Math Works Inc. (2000)

  38. Kumar, A., Singh, G.K., Kuldeep, B.: An improved closed form design method for the cosine modulated filter banks using windowing technique. Appl. Soft Comput. 11(3), 3209–3217 (2011)

    Article  Google Scholar 

  39. Chen, J., Itoh, S.A.: Wavelet transform-based ECG compression method guaranteeing desired signal quality. IEEE Trans. Biomed. Eng. 45, 1414–1419 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, R., Kumar, A. & Pandey, R.K. Electrocardiogram Signal Compression Using Beta Wavelets. J Math Model Algor 11, 235–248 (2012). https://doi.org/10.1007/s10852-012-9181-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10852-012-9181-9

Keywords

Navigation