Abstract
We present a probabilistic graphical model formulation for the graph clustering problem. This enables us to locally represent uncertainty of image partitions by approximate marginal distributions in a mathematically substantiated way, and to rectify local data term cues so as to close contours and to obtain valid partitions. We exploit recent progress on globally optimal MAP inference by integer programming and on perturbation-based approximations of the log-partition function, in order to sample clusterings and to estimate marginal distributions of node-pairs both more accurately and more efficiently than state-of-the-art methods. Our approach works for any graphically represented problem instance. This is demonstrated for image segmentation and social network cluster analysis. Our mathematical ansatz should be relevant also for other combinatorial problems.
Similar content being viewed by others
Notes
For \(\theta \in \mathbb {R}^N\) we have \(\mu \in {{\mathrm{{\mathcal {MC}}}}}^\circ (G)\). Boundary points of \({{\mathrm{{\mathcal {MC}}}}}(G)\) are only reached when at least one entry of \(\theta \) is diverging to infinity.
To overcome this problem we will restrict the number of possible labels and exclude thereby some partitions. If the number of used labels is greater or equal than the chromatic number of the graph all partitions are representable.
A graph is called chordal, if each cycle of length strictly larger than 3 have a chord, which is an edge that is not part of the cycle but connects two vertices of the cycle.
For reasons of anonymity, however, we show anonymized results.
References
Aigner, M.: Combinatorial Theory. Springer, Berlin (1997)
Ambrosio, L., Tortorelli, V.: Approximation of functionals depending on jumps by elliptic functionals via \(\gamma \)-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990)
Andres, B., Beier, T., Kappes, J.H.: OpenGM: A C++ library for Discrete Graphical Models. CoRR arXiv:1206.0111 (2012)
Andres, B., Kappes, J.H., Beier, T., Köthe, U., Hamprecht, F.A.: Probabilistic image segmentation with closedness constraints. In: ICCV, pp. 2611–2618. IEEE (2011)
Bagon, S., Galun, M.: Large scale correlation clustering optimization. CoRR arXiv:1112.2903 (2011)
Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113 (2004)
Beier, T., Hamprecht, F.A., Kappes, J.H.: Fusion moves for correlation clustering. In: IEEE Conference on Computer Vision an Pattern Recognition (CVPR) (2015)
Beier, T., Kroeger, T., Kappes, J.H., Koethe, U., Hamprecht, F.A.: Cut, Glue & cut: a fast, approximate solver for multicut partitioning. In: IEEE Conference on Computer Vision and Pattern Recognition (2014)
Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press, Massachusetts (1987)
Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On modularity clustering. IEEE Trans. Knowl. Data Eng. 20(2), 172–188 (2008). doi:10.1109/TKDE.2007.190689
Chambolle, A., Cremers, D., Pock, T.: A convex approach to minimal partitions. SIAM J. Imaging Sci. 5(4), 1113–1158 (2012)
Chopra, S., Rao, M.: The partition problem. Math. Programm. 59(1–3), 87–115 (1993). doi:10.1007/BF01581239
Demaine, E.D., Emanuel, D., Fiat, A., Immorlica, N.: Correlation clustering in general weighted graphs. Theor. Comput. Sci. 361(2), 172–187 (2006). doi:10.1016/j.tcs.2006.05.008. Approximation and Online Algorithms
Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2), 169–197 (1981)
Gumbel, E.: Statistical Theory of Extreme Values and Some Practical Applications: A Series of Lectures. Applied Mathematics Series. U. S. Government Printing Office, Washington, DC (1954)
Hazan, T., Jaakkola, T.: On the partition function and random maximum a-posteriori perturbations. In: ICML. icml.cc / Omnipress (2012)
Hazan, T., Maji, S., Jaakkola, T.S.: On sampling from the Gibbs distribution with random maximum a-posteriori perturbations. In: C.J.C. Burges, L. Bottou, Z. Ghahramani, K.Q. Weinberger (eds.) Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a meeting held December 5–8, 2013, Lake Tahoe, Nevada, pp. 1268–1276 (2013)
Hofmann, T., Buhmann, J.: Pairwise data clustering by deterministic annealing. IEEE Trans. Patt. Anal. Mach. Intell. 19(1), 1–14 (1997)
Kannan, R., Vempala, S., Vetta, A.: On clusterings: good, bad and spectral. J. ACM 51(3), 497–515 (2004)
Kappes, J.H., Andres, B., Hamprecht, F.A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B.X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., Rother, C.: A comparative study of modern inference techniques for structured discrete energy minimization problems. Int. J. Comput. Vis. 115(2), 155–184 (2015). doi:10.1007/s11263-015-0809-x
Kappes, J.H., Andres, B., Hamprecht, F.A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B.X., Lellmann, J., Komodakis, N., Rother, C.: A comparative study of modern inference techniques for discrete energy minimization problems. In: CVPR (2013)
Kappes, J.H., Speth, M., Andres, B., Reinelt, G., Schnörr, C.: Globally optimal image partitioning by multicuts. In: EMMCVPR, pp. 31–44. Springer (2011)
Kappes, J.H., Speth, M., Reinelt, G., Schnörr, C.: Higher-order segmentation via multicuts. Comput. Vis. Image Underst. 143, 104–119 (2016). Inference and Learning of Graphical Models Theory and Applications in Computer Vision and Image Analysis
Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49(2), 291–308 (1970)
Kschischang, F., Member, S., Frey, B.J., Loeliger, Ha: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47, 498–519 (2001)
Lauritzen, S.L.: Graphical Models. Oxford University Press, Oxford (1996)
Lellmann, J., Schnörr, C.: Continuous multiclass labeling approaches and algorithms. SIAM J. Imaging Sci. 4(4), 1049–1096 (2011)
von Luxburg, U.: A Tutorial on Spectral Clustering. Stat. Comput. 17(4), 395–416 (2007)
von Luxburg, U.: Clustering stability: an overview. Found. Trends Mach. Learn. 2(3), 235–274 (2009)
Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th International Conference on Computer Vision, vol. 2, pp. 416–423 (2001)
Mooij, J.M.: libDAI: a free and open source C++ library for discrete approximate inference in graphical models. J. Mach. Learn. Res. 11, 2169–2173 (2010)
Nowozin, S., Jegelka, S.: Solution stability in linear programming relaxations: graph partitioning and unsupervised learning. In: Danyluk, A.P., Bottou, L., Littman, M.L. (eds.) ICML, ACM International Conference Proceeding Series, vol. 382, pp. 769–776. ACM (2009)
Orbanz, P., Buhmann, J.: Nonparametric bayesian image segmentation. Int. J. Comput. Vis. 77(1–3), 25–45 (2008)
Papandreou, G., Yuille, A.: Perturb-and-MAP Random Fields: Using Discrete Optimization to Learn and Sample from Energy Models. In: Proceedings of the ICCV (2011)
Papandreou, G., Yuille, A.L.: Perturb-and-map random fields: using discrete optimization to learn and sample from energy models. In: Metaxas, D.N., Quan, L., Sanfeliu, A., Gool, L.J.V. (eds.) ICCV, pp. 193–200. IEEE (2011)
Pätz, T., Kirby, R., Preusser, T.: Ambrosio-Tortorelli segmentation of stochastic images: model extensions, theoretical investigations and numerical methods. Int. J. Comput. Vis. 103(2), 190–212 (2013)
Rebagliati, N., Rota Bulo, S., Pelillo, M.: Correlation clustering with stochastic labellings. In: Pelillo, M. (ed.) Similarity-Based Pattern Recognition. LNCS, vol. 7953, pp. 120–133. Springer, Berlin (2013)
Shental, N., Zomet, A., Hertz, T., Weiss, Y.: Pairwise clustering and graphical models. In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems 16, pp. 185–192. MIT Press, Cambridge, MA (2004)
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)
Steutel, F., van Harn, K.: Infinite Divisibility of Probability Distributions on the Real Line. Chapman & Hall/CRC Pure and Applied Mathematics. CRC Press, Boca Raton (2003)
Wainwright, M.J., Jaakkola, T.S., Willsky, A.S.: Tree-based reparameterization framework for analysis of sum-product and related algorithms. IEEE Trans. Inf. Theory 49(5), 1120–1146 (2003). doi:10.1109/TIT.2003.810642
Wainwright, M.J., Jordan, M.I.: Graphical models, exponential families, and variational inference. Found. Trends\(\textregistered \) Mach. Learn. 1, 1–305 (2008). doi:10.1561/2200000001
Yedidia, J.S., Freeman, W., Weiss, Y.: Constructing free-energy approximations and generalized belief propagation algorithms. IEEE Trans. Inf. Theory 51(7), 2282–2312 (2005). doi:10.1109/TIT.2005.850085
Acknowledgments
This work has been supported by the German Research Foundation (DFG) within the programme “Spatio-/Temporal Graphical Models and Applications in Image Analysis”, Grant GRK 1653.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kappes, J.H., Swoboda, P., Savchynskyy, B. et al. Multicuts and Perturb & MAP for Probabilistic Graph Clustering. J Math Imaging Vis 56, 221–237 (2016). https://doi.org/10.1007/s10851-016-0659-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-016-0659-3