Abstract
In this study, we develop a telephoto pan-tilt drone search and track system for multicopters flying in a wide area spanning hundreds of meters, situated at a distance of hundreds of meters. It can detect periodic brightness changes around the drone propellers, which rotate at a high speed, in a high-frame-rate (HFR) video. The temporal frequency responses of the brightness signals in the HFR video are computed by performing pixel-level short-time Fourier transforms (STFTs) of the signals. By detecting the peak frequencies, the drone propellers are localized as vibration sources, and their rotation speed is estimated to monitor the flight status of the drone. For real-time localization and flight monitoring, the proposed system can perform pixel-level STFTs in a 500 fps video of 720×540 pixels using video processing accelerated by graphic processing units. This allows a multicopter to be tracked in real time at the center of the camera view by a galvanomirror pan-tilt active vision system with visual feedback. We verified its effectiveness by examining HFR videos for flying multicopters of different appearance, and conducted tracking experiments in outdoor scenes involving multicopters flying at an altitude of 70 m and 200 m ahead in a mountainous background.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Anti-drone market by technology (laser, kinetic, and electronics), application (detection and detection & disruption), vertical (military & defense, homeland security, and commercial), and geography - global forecast to 2023. Marketsandmarkets (2017)
Commercial drone market size, share & trends analysis report by application (filming & photography, inspection & maintenance), by product (fixed-wing, rotary blade hybrid), by end use, and segment forecasts, 2019–2025, Grand view research (2019)
Dedrone, DroneDNA. [Online]. Available: https://www.dedrone.com/products/dronedna. Accessed 24 Jun 2020 (2019)
Droneshield, Drone Sentinel. [Online]. Available: https://www.droneshield.com/sentinel. Accessed 24 Jun 2020 (2019)
AUDS, AUDS ANTI-UAV Defence System. [Online]. Available: http://www.blighter.com/products/auds-anti-uav-defence-system.html. Accessed 24 Jun 2020 (2017)
SKYLOCK, Drone detection systems. [Online]. Available: https://www.skylock1.com/drone-detection/. Accessed 24 Jun 2020 (2020)
Shi, X., Yang, C., Xie, W., Liang, C., Shi, Z., Chen, J.: Anti-drone system with multiple surveillance technologies: architecture, implementation, and challenges. IEEE Commun. Mag. 56(4), 68–74 (2018)
Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38(4) (2006)
Li, X., Hu, W., Shen, C., Zhang, Z., Dick, A., Hengel, A.: A survey of appearance models in visual object tracking. ACM Trans. Intell. Syst. Technol. 4(4) (2013)
Wu, Y., Lim, J., Yang, M.H.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015)
Cavaliere, D., Loia, V., Saggese, A., Senatore, S., Vento, M.: A human-like description of scene events for a proper UAV-based video content analysis. Knowledge-Based Syst. 178, 163–175 (2019)
Cong, Y., Fan, B., Liu, J., Luo, J., Yu, H.: Speeded up low-rank online metric learning for object tracking. IEEE Trans. Circ. Syst. Video Technol. 25(6), 922–934 (2015)
Lee, Y., Tang, Z., cameras, J. Hwang.: Online-learning-based human tracking across non-overlapping. IEEE Trans. Circ. Syst. Video Technol. 28(10), 2870–2883 (2017)
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.: SSD: single shot multibox detector. In: Proc. Eur. Conf. Comput. Vision., pp 21–37 (2016)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: toward real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2015)
Redmon, J., Farhadi, A.: YOLOv3: An incremental improvement. arXiv:http://arxiv.org/abs/1804.02767(2018)
Jiang, M., Aoyama, T., Takaki, T., Ishii, I.: Pixel-level and robust vibration source sensing in high-frame-rate video analysis. Sensors 16(11), 1842 (2016)
Jiang, M., Gu, Q., Aoyama, T., Takaki, T., Ishii, I.: Real-time vibration source tracking using high-speed vision. IEEE Sensors J. 17(5), 1513–1527 (2017)
Fujiwara, N., Shimasaki, K., Jiang, M., Takaki, T., Ishii, I.: A real-time drone surveillance system using pixel-level short-time Fourier transform. In: Proc. IEEE Int. Symp. Saf. Secur. Rescue Robot., pp 303–308 (2019)
Schroder, A., Renker, M., Aulenbacher, U., Murk, A., Boniger, U., Oechslin, R., Wellig, P.: Numerical and experimental radar cross section analysis of the quadrocopter DJI Phantom 2. In: Proc. IEEE Radar Conf., pp 463–468 (2015)
Hoffmann, F., Ritchie, M., Fioranelli, F., Charlish, A., Griffiths, H.: Micro-doppler based detection and tracking of UAVs with multistatic radar. In: Proc. IEEE Radar Conf., pp 1–6 (2016)
Farlik, V.S.J., Kratky, M., Casar, J.: Radar cross section and detection of small unmanned aerial vehicles. In: IEEE Int. Conf. Mechatronics., pp 5–7 (2016)
Li, C.J., Ling, H.: An investigation on the radar signatures of small consumer drones. IEEE Antennas Wirel. Propag. Lett. 16, 649–652 (2017)
Poitevin, P., Pelletier, M., Lamontagne, P.: Challenges in detecting UAS with radar. In: Proc. Int. Carnahan Conf. Secur. Technol., pp 1–6 (2017)
De Quevedo, A.D., Urzaiz, F.I., Menoyo, J.G., Lopez, A.A.: Drone detection and RCS measurements with ubiquitous radar. In: Proc. Int. Conf. Radar., pp 1–6 (2018)
Pham, T., Srour, N.: TTCP AG-6: Acoustic detection and tracking of UAVs. In: Proc. SPIE Secur. Defense., pp 24–30 (2004)
Busset, J., Perrodin, F., Wellig, P., Ott, B., Heutschi, K., Rühl, T., Nussbaumer, T.: Detection and tracking of drones using advanced acoustic cameras. In: Proc. SPIE Secur. Defense., pp 96470F–96470F (2015)
Mezei, J., Fiaska, V., Molnr, A.: Drone sound detection. In: IEEE Int. Symp. Comput. Intell. Inform, pp 333–338 (2015)
Christnacher, F., et al.: Optical and acoustical UAV detection. In: Proc. SPIE Secur. Defense., vol. 9988, pp 99880B-1–99880B-13 (2016)
Drone bouncer, Orelia Drone-Detector. [Online]. Available: http://dronebouncer.com/en/orelia-drone-detector. Accessed 24 Jun 2020 (2020)
Dronelabs, Drone Detector. [Online]. Available: http://www.dronedetector.com/compare-detection-systems. Accessed 24 Jun 2020 (2020)
Shi, Z., Chang, X., Yang, C., Wu, Z., Wu, J.: An acoustic-based surveillance system for amateur drones detection and localization. IEEE Trans. Veh. Technol. 69(3), 2731–2739 (2020)
DDC, Domestic drone countermeasures. [Online]. Available: http://www.ddcountermeasures.com/products.html. Accessed 24 Jun 2020 (2020)
Rohde&Schwarz, R&S ARDRONIS. [Online]. Available: https://www.rohde-schwarz.com/us/products/aerospace-defense-security/countering-drones/ardronis-overview_250881.html. Accessed 24 Jun 2020 (2020)
Peacock, M., Johnstone, M.N.: Towards detection and control of civilian unmanned aerial vehicles. In: Proc. 14th Aust. Inf. Warfare Secur. Conf., pp 9–15 (2013)
Nguyen, P., Ravindranatha, M., Nguyen, A., Han, R., Vu, T.: Investigating cost-effective RF-based detection of drones. In: Proc. ACM. Work. Micro Aerial Veh. Netw. Syst. Appl. Civilian Use., pp 17–22 (2016)
Drozdowicz, J., Wielgo, M., Samczynski, P., Kulpa, K., Krzonkalla, J., Mordzonek, M., Bryl, M., Jakielaszek, Z.: 35 GHz FMCW drone detection system. In: Int. Radar Symp., pp 1–4 (2016)
Rozantsev, A., Lepetit, V., Fua, P.: Flying objects detection from a single moving camera. In: Proc. IEEE Conf. Comput. Vision. Pattern Recognit., pp 4128–4136 (2015)
Zhang, Z., Cao, Y., Ding, M., Zhuang, L., Yao, W.: An intruder detection algorithm for vision based sense and avoid system. In: Proc. IEEE Int. Conf. Unmanned Aircr. Syst., pp 550–556 (2016)
Ganti, S.R., Kim, Y.: Implementation of detection and tracking mechanism for small UAS. In: Proc. IEEE Int. Conf. Unmanned Aircr. Syst., pp 1254–1260 (2016)
Wu, Y., Sui, Y., Wang, G.: Vision-based real-time aerial object localization and tracking for UAV sensing system. IEEE Access 5, 23969–23978 (2017)
Rozantsev, A., Lepetit, V., Fua, P.: Detecting flying objects using a single moving camera. IEEE Trans. Pattern Anal. Mach. Intell. 39(5), 879–892 (2017)
Saqib, M., Khan, S.D., Sharma, N., Blumenstein, M.: A study on detecting drones using deep convolutional neural networks. In: Proc. IEEE Int. Conf. Adv. Video Signal Based Surveillance, pp 1–5 (2017)
Aker, C., Kalkan, S.: Using deep networks for drone detection. In: Proc. IEEE Int. Conf. Adv. Video Signal Based Surveillance, pp 1–6 (2017)
Schumann, A., Sommer, L., Klatte, J., Schuchert, T., Beyerer, J.: Deep cross-domain flying object classification for robust UAV detection. In: Proc. IEEE Int. Conf. Adv. Video. Signal Based Surveillance, pp 1–6 (2017)
Lin, C.: DroneNet. [Online] Available: https://github.com/chuanenlin/drone-net. Accessed 24 Jun 2020 (2018)
Zsedrovits, T., Zarndy, A., Vanek, B., Pni, T., Bokor, J., Roska, T.: Collision avoidance for UAV using visual detection. In: IEEE Int. Symp. Circuits Syst., pp 2173–2176 (2011)
Lai, J., Mejias, L., Ford, J.J.: Airborne vision-based collision detection system. J. Field Robot. 28(2), 137–157 ( 2011)
Lopez, B.T., How, J.P.: Aggressive 3-d collision avoidance for high-speed navigation. In: Proc. IEEE Int. Conf. Robot. Automat., pp 5759–5765 (2017)
Andrasi, P., Radisic, T., Mustra, M., Ivosevic, J.: Night-time detection of UAVs using thermal infrared camera. INAIR. 28, 183–190 (2017)
Sosnowski, T., Bieszczad, G., Madura, H., Kastek, M.: Thermovision system for flying objects detection. In: Baltic URSI Symp., pp 141–144 (2018)
Caetano, E., Silva, S., Bateira, J.: A vision system for vibration monitoring of civil engineering structures. Exp. Techn. 35(4), 74–82 (2011)
Maas, H.G., Hampel, U.: Photogrammetric techniques in civil engineering material testing and structure monitoring. Photogram. Eng. Remote Sens. 72(1), 39–45 (2006)
Chen, J.G., Wadhwa, N., Durand, F., Freeman, W.T., Buyukozturk, O.: Developments with motion magnification for structural modal identification through camera video. Dyn. Civil Struct. 2, 49–57 (2015)
Ishii, I., Tatebe, T., Gu, Q., Moriue, Y., Takaki, T., Tajima, K.: 2000 fps real-time vision system with high-frame-rate video recording. In: Proc. IEEE Int. Conf. Robot. Automat., pp 1536–1541 (2010)
Sharma, A., Shimasaki, K., Gu, Q., Chen, J., Aoyama, T., Takaki, T., Ishii, I.: Super high-speed vision platform that can process 1024×1024 images in real time at 12500 fps. In: Proc. IEEE/SICE Int. Symp. Syst. Integr., pp 544–549 (2016)
Yamazaki, T., Katayama, H., Uehara, S., Nose, A., Kobayashi, M., Shida, S., Odahara, M., Takamiya, K., Hisamatsu, Y., Matsumoto, S., Miyashita, L., Watanabe, Y., Izawa, T., Muramatsu, Y.: M. Ishikawa. A 1ms high-speed vision chip with 3D-stacked 140GOPS column-parallel PEs for spatio-temporal image processing. In: Tech. Dig IEEE Solid-State Circuits Conf., pp 82–83 (2017)
Ishii, I., Taniguchi, T., Yamamoto, K., Takaki, T.: High-frame-rate optical flow system. IEEE Trans. Circuits Syst. Video Technol. 22(1), 105–112 (2012)
Ishii, I., Ichida, T., Gu, Q., Takaki, T.: 500-fps face tracking system. J. Real-time Image Process. 8(4), 379–388 (2013)
Okumura, K., Yokoyama, K., Oku, H., Ishikawa, M.: 1ms auto pan-tilt video shooting technology for objects in motion based on saccade mirror with background subtraction. Adv. Robot. 29(7), 457–468 (2015)
Namiki, A., Imai, Y., Kaneko, M., Ishikawa, M.: Development of a high-speed multifingered hand system and its application to catching. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp 2666–2671 (2003)
Nakamura, Y., Kishi, K., Kawakami, H.: Heartbeat synchronization for robotic cardiac surgery, pp 2014–2019 (2001)
Ishii, I., Kurozumi, S., Orito, K., Matsuda, H.: Automatic scratching pattern detection for laboratory mice using high-speed video images. IEEE Trans. Automat. Sci. Eng. 5(1), 176–182 (2008)
Nie, Y., Ishii, I., Yamamoto, K., Orito, K., Matsuda, H.: Real-time scratching behavior quantification system for laboratory mice using high-speed vision. J. Real Time Image Process. 4(2), 181–190 (2009)
Shimasaki, K., Jiang, M., Takaki, T., Ishii, I., Yamamoto, K.: HFR-video-based honeybee activity sensing using pixel-level short-time Fourier transform. In: Proc. IEEE Sensors 2018, pp 812–815 (2018)
Shimasaki, K., Jiang, M., Takaki, T., Ishii, I., Yamamoto, K.: HFR-video-based honeybee activity sensing. IEEE Sensors J. 20(10), 5575–5587 (2020)
Sakuma, S., Kuroda, K., Tsai, C., Fukui, W., Arai, F., Kaneko, M.: Red blood cell fatigue evaluation based on the close-encountering point between extensibility and recoverability. Lab Chip. 14, 1135–1141 (2014)
Gu, Q., Aoyama, T., Takaki, T., Ishii, I.: Simultaneous vision-based shape and motion analysis of cells fast-flowing in a microchannel. IEEE Trans. Automat. Sci. Eng. 12(1), 204–215 (2015)
Gu, Q., Kawahara, T., Aoyama, T., Takaki, T., Ishii, I., Takemoto, A., Sakamoto, N.: LOC-Based High-throughput cell morphology analysis system. IEEE Trans. Automat. Sci. Eng. 12(4), 1346–1356 (2015)
Yang, H., Gu, Q., Aoyama, T., Takaki, T., Ishii, I.: Dynamics-based stereo visual inspection using multidimensional modal analysis. IEEE Sensors. J. 13(12), 4831–4843 (2013)
Aoyama, T., Li, L., Jiang, M., Inoue, K., Takaki, T., Ishii, I., Yang, H., Umemoto, C., Matsuda, H., Chikaraishi, M., Fujiwara, A.: Vibration sensing of a bridge model using a multithread active vision system. IEEE/ASME Trans. Mechatronics. 23(1), 179–189 (2018)
Aoyama, T., Li, L., Jiang, M., Takaki, T., Ishii, I., Yang, H., Umemoto, C., Matsuda, H., Chikaraishi, M., Fujiwara, A.: Vision-based modal analysis using multiple vibration distribution synthesis to inspect large-scale structures. J. Dyn. Syst. Meas. Control 141(3), 031007–1–031007-12 (2019)
Gu, Q., Takaki, T., Ishii, I.: A fast multi-object extraction algorithm based on cell-based connected components labeling. IEICE Trans. Inform. Syst. E95-D(2), 636–645 (2012)
Funding
This work was supported in part by MIC (Ministry of Internal Affairs and Communications, Japan) Strategic Information and Communications R&D Promotion Programme under Grant 181608001.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Shimasaki, K., Fujiwara, N., Hu, S. et al. High-frame-rate Video-based Multicopter Tracking System Using Pixel-level Short-time Fourier Transform. J Intell Robot Syst 103, 36 (2021). https://doi.org/10.1007/s10846-021-01483-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10846-021-01483-2