iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s10846-018-0936-z
Smooth Cubic Polynomial Trajectories for Human-Robot Interactions | Journal of Intelligent & Robotic Systems Skip to main content

Advertisement

Log in

Smooth Cubic Polynomial Trajectories for Human-Robot Interactions

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

With the growing importance of Human-Robot Interaction (HRI), the movement of the robots requires more and more attention to address the issues related to safety, efficiency and ergonomics. Trajectories are excellent candidates in the making of desirable motions designed for collaborative robots, because they allow to simply and precisely describe the motions. Despite the large number of works available for Online Trajectory Generation (OTG), there was, to our knowledge, no complete solution capable to simultaneously meet all the requirements of these new applications. In this paper we present a complete trajectory generation algorithm that build trajectories from arbitrary initial and final conditions, subject to general asymmetric bounds on jerk, acceleration and velocity. A review of the state of the art exposes the limits of the previous OTG works and reveals the difficult problem of non-linearity related with short motions. We explain how these non-linearities introduce discontinuities and we propose a solution based on sequences of segment of third degree polynomial functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Amirabdollahian, F., Loureiro, R., Harwin, W.: Minimum jerk trajectory control for rehabilitation and haptic applications. In: Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), vol. 4, pp. 3380–3385 (2002)

  2. Arai, T., Kato, R., Fujita, M.: Assessment of operator stress induced by robot collaboration in assembly. CIRP Ann. Manuf. Technol. 59, 5–8 (2010)

    Article  Google Scholar 

  3. Beggs, W.D.A., Howarth, C.I.: The movement of the hand towards a target. Q. J. Exp. Psychol. 24, 448–453 (1972)

    Article  Google Scholar 

  4. Biagiotti, L.: Trajectory Planning for Automatic Machines and Robots. Springer, Berlin (2008)

    Google Scholar 

  5. Bianco, C.G.L., Gerelli, O.: Online trajectory scaling for manipulators subject to high-order kinematic and dynamic constraints. IEEE Trans. Robot. 27, 1144–1152 (2011)

    Article  Google Scholar 

  6. Bizzi, E., Accornero, N., Chapple, W., Hogan, N.: Posture control and trajectory formation during arm movement. J. Neurosci. Off. J. Soc. Neurosci. 4, 2738–2744 (1984)

    Article  Google Scholar 

  7. Broquère, X., Sidobre, D., Herrera-Aguilar, I.: Soft motion trajectory planner for service manipulator robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2808–2813. IEEE (2008)

  8. Broquère, X., Sidobre, D., Nguyen, K.: From motion planning to trajectory control with bounded jerk for service manipulator robots. In: Robotics and Automation (ICRA), pp. 4505–4510. IEEE (2010)

  9. Butler, J.T., Agah, A.: Psychological effects of behavior patterns of a mobile personal robot. Auton. Robot. 10, 185–202 (2001)

    Article  MATH  Google Scholar 

  10. Costantinescu, D., Croft, E.A.: Smooth and time-optimal trajectory planning for industrial manipulators along specified paths. J. Robot. Syst. 17, 233–249 (2000)

    Article  MATH  Google Scholar 

  11. Craig, J.J.: Introduction to Robotics: Mechanics and Control. Pearson/Prentice Hall, Upper Saddle River (1986). 416 pp.

    Google Scholar 

  12. Dragan, A., Srinivasa, S.: Generating legible motion. Robotics: Science and Systems. Pittsburgh (2013)

  13. Dragan, A.D., Lee, K.C., Srinivasa, S.S.: Legibility and predictability of robot motion. In: 2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 301–308. IEEE (2013)

  14. Ezair, B., Tassa, T., Shiller, Z.: Planning high order trajectories with general initial and final conditions and asymmetric bounds. Int. J. Robot. Res. 33, 898–916 (2014)

    Article  Google Scholar 

  15. Ezair, B., Tassa, T., Shiller, Z.: Multi-axis High-order Trajectory Planning. In: Workshop on Robot Motion Planning: Online, Reactive, and Real-time (2012)

  16. Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. Off. J. Soc. Neurosci. 5, 1688–1703 (1985)

    Article  Google Scholar 

  17. Flocke, N.: Algorithm 954: an accurate and efficient cubic and quartic equation solver for physical applications. ACM Trans. Math. Softw. 41, 1–24 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fujita, M., Kato, R., Tamio, A.: Assessment of operators’ mental strain induced by hand-over motion of industrial robot manipulator. In: RO-MAN, pp. 361–366. IEEE (2010)

  19. Gasparetto, A., Zanotto, V.: A technique for time-jerk optimal planning of robot trajectories. Robot. Comput. Integr. Manuf. 24, 415–426 (2008)

    Article  Google Scholar 

  20. Gerelli, O., Bianco, C.G.L.: Nonlinear variable structure filter for the online trajectory scaling. IEEE Trans. Ind. Electron. 56, 3921–3930 (2009)

    Article  Google Scholar 

  21. Haschke, R., Weitnauer, E., Ritter H.: On-line planning of time-optimal, jerk-limited trajectories. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3248–3253. IEEE (2008)

  22. Herrera-Aguilar, I., Sidobre, D.: Soft motion trajectory planning and control for service manipulator robot. In: Workshop on Physical Human-Robot Interaction in Anthropic Domains at IROS, pp. 13–22 (2006)

  23. Hoffman, G., Breazeal, C.: Effects of anticipatory action on human-robot teamwork efficiency, fluency, and perception of team. In: Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction, pp. 1–8. ACM (2007)

  24. Hogan, N.: Control and coordination of voluntary arm movements. In: 1982 American Control Conference, pp. 522–528 (1982)

  25. Hogan, N.: An organizing principle for a class of voluntary movements. J. Neurosci. Off. J. Soc. Neurosci. 4, 2745–2754 (1984)

    Article  Google Scholar 

  26. Kavraki, L.E., LaValle, S.M.: Motion Planning. In: Prof, B.S., Prof, O.K. (eds.) Springer Handbook of Robotics, pp. 109–131. Springer, Berlin (2008)

  27. Khalil, W., Dombre, E.: Modeling, Identification and Control of Robots. Butterworth-Heinemann. 503 pp. (2004)

  28. Khalil, W., Dombre, E., Merlet, J.-P., Pierrot, F., Wenger, P., Haddad, M., Chettibi, T., Lehtihet, H., Dauchez, P., Fraisse, P., et al.: Modeling, performance analysis and control of robot manipulators. Wiley Online Library (2007)

  29. Krüger, J., Lien, T., Verl, A.: Cooperation of human and machines in assembly lines. CIRP Ann. 58, 628–646 (2009)

    Article  Google Scholar 

  30. Kroger, T., Wahl, F.: Online trajectory generation: basic concepts for instantaneous reactions to unforeseen events. IEEE Trans. Robot. 26, 94–111 (2010)

    Article  Google Scholar 

  31. Kroger, T.: On-line trajectory generation: nonconstant motion constraints. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 2048–2054. IEEE (2012)

  32. Kroger, T., Tomiczek, A., Wahl, F.M.: Towards on-line trajectory computation. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 736–741. IEEE (2006)

  33. Kyriakopoulos, K.J., Saridis, G.N.: Minimum jerk path generation. In: 1988 IEEE International Conference on Robotics and Automation Proceedings, vol. 1, pp. 364–369 (1988)

  34. Lambrechts, P., Boerlage, M., Steinbuch, M.: Trajectory planning and feedforward design for electromechanical motion systems. Control. Eng. Pract. 13, 145–157 (2005)

    Article  Google Scholar 

  35. Lasota, P.A., Rossano, G.F., Shah, J.A.: Toward safe close-proximity human-robot interaction with standard industrial robots. In: 2014 IEEE International Conference on Automation Science and Engineering (CASE), pp. 339–344 (2014)

  36. Lasota, P.A., Shah, J.A.: Analyzing the effects of human-aware motion planning on close-proximity human–robot collaboration. Hum. Factors: J. Hum. Factors Ergon. Soc. 57, 21– 33 (2015)

    Article  Google Scholar 

  37. Lasota, P.A., Fong, T., Shah, J.A.: A survey of methods for safe human-robot interaction. Found. Trends Robot. 5, 261–349 (2017)

    Article  Google Scholar 

  38. Latombe, J.C.: Robot Motion Planning \(|\) Jean-Claude Latombe \(|\). Springer, Berlin (1990)

    Google Scholar 

  39. LaValle, S.M.: Planning Algorithms. Cambridge University Press, New York (2006)

    Book  MATH  Google Scholar 

  40. Liu, S.: An on-line reference-trajectory generator for smooth motion of impulse-controlled industrial manipulators. In: 7th International Workshop on Advanced Motion Control, 2002, pp. 365–370. IEEE (2002)

  41. Macfarlane, S., Croft, E.: Jerk-bounded manipulator trajectory planning: design for real-time applications. IEEE Trans. Robot. Autom. 19, 42–52 (2003)

    Article  Google Scholar 

  42. Maple: Maplesoft, a division of Waterloo Maple Inc., Waterloo. http://www.maplesoft.com/ (2016)

  43. Maxima: A Computer Algebra System. Version 5.39.0. http://maxima.sourceforge.net/ (2017)

  44. Meisner, E., Isler, V., Trinkle, J.: Controller design for human-robot interaction. Auton. Robot. 24, 123–134 (2008)

    Article  Google Scholar 

  45. Nagasaki, H.: Asymmetric velocity and acceleration profiles of human arm movements. Exp. Brain Res. 74, 319–326 (1989)

    Article  Google Scholar 

  46. Nguyen, K.D., Ng, T.C., Chen, I.M.: On algorithms for planning S-curve motion profiles. Int. J. Adv. Robot. Syst. 5, 99–106 (2008)

    Article  Google Scholar 

  47. Ostry, D.J., Cooke, J.D., Munhall, K.G.: Velocity curves of human arm and speech movements. Exp. Brain Res. 68, 37–46 (1987)

    Article  Google Scholar 

  48. Piazzi, A., Visioli, A.: An interval algorithm for minimum-jerk trajectory planning of robot manipulators. In: Proceedings of the 36th IEEE Conference on Decision and Control, vol. 2, pp. 1924–1927 (1997)

  49. Piazzi, A., Visioli, A.: Global minimum-jerk trajectory planning of robot manipulators. IEEE Trans. Ind. Electron. 47, 140–149 (2000)

    Article  Google Scholar 

  50. Rivera-Guillen, J.R., Romero-Troncoso, R.J., Osornio-Rios, A., Garcia-Perez, A., Torres-Pacheco, I.: Extending tool-life through jerk-limited motion dynamics in machining processes: an experimental study. JSIR 69(12) (2010)

  51. Schwarze, J.: In: Glassner, A.S. (ed.) Graphics Gems, pp. 404–407. Academic Press Professional, Inc. Chap. Cubic and Quartic Roots, San Diego (1990)

  52. Sidobre, D., He, W.: Online task space trajectory generation. In: Workshop on Robot Motion Planning: Online, Reactive, and in Real-time (2012)

  53. Sisbot, E.A., Marin-Urias, L., Alami, R., Simeon, T.: A human aware mobile robot motion planner. IEEE Trans. Robot. 23, 874–883 (2007)

    Article  Google Scholar 

  54. Strobach, P.: The fast quartic solver. J. Comput. Appl. Math. 234, 3007–3024 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  55. Strobach, P.: The low-rank LDLT quartic solver. AST-Consulting Technical Report 10, 3955–7440 (2015)

    Google Scholar 

  56. Zanotto, V., Gasparetto, A., Lanzutti, A., Boscariol, P., Vidoni, R.: Experimental validation of minimum time-jerk algorithms for industrial robots. J. Intell. Robot. Syst. 64, 00033197–219 (2011)

    Article  Google Scholar 

  57. Zhao, R., Sidobre, D., He, W.: Online via-points trajectory generation for reactive manipulations. In: 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1243–1248. IEEE (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Sidobre.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Analytic Expression of the Parametric Curve

\(\mathcal {C}(x_{f}(t_{n}), t_{f}(t_{n}))\)

We consider here the particular case where the trajectory is defined by:

  • Three non null jerk segments associated to parabolas in the phase diagram.

  • The first and the last segments are associated to \(J_{min}<0.\).

  • The third segment begin with a positive acceleration \(a_{2}\).

The first trajectory segment is entirely defined by the initial conditions \(a_{i}\) and \(v_{i}\) and the duration \(t_{1}\) using the equations (3). The parabola associated to the second segment cross the abscissa axis at \(v_{i}^{\prime }\) and the one associated to the third segment at \(v_{f}^{\prime }\) with:

$$\begin{array}{@{}rcl@{}} v_{i}^{\prime} = v_{i} - \frac{{a_{i}}^{2}}{2 J_{max}} v_{f}^{\prime} = v_{f} - \frac{{a_{f}}^{2}}{2 J_{min}} \end{array} $$

And the acceleration at the intersection point of the two parabolas is \(a_{2}\) defined by:

$$\begin{array}{@{}rcl@{}} a_{2} = \sqrt{ \frac{ 2(v_{i}^{\prime}-v_{f}^{\prime}) \times J_{max}\times J_{min}}{J_{max}-J_{min}} } \end{array} $$

We choose the positive solution as defined in the hypothesis and compute the durations \(t_{2}\) and \(t_{3}\) of the two last segments.

$$\begin{array}{@{}rcl@{}} t_{2} = \frac{(a_{2} - a_{1})}{ J_{max}} t_{3} = \frac{(a_{f} - a_{2})}{J_{min}} \end{array} $$

From the Eqs. 4 and 5 and using an algebraic calculator, the values of \(x_{f}\) and \(t_{f} = t_{1}{+}t_{2}{+}t_{3}\) can be easily computed. Then the zeros of the derivative of the \(x_{f}\) function with respect to \(t_{1}\) would define the points of discontinuity of the optimal curve \(C_{opt}\). Unfortunately, we cannot manage to obtain these points in a usable form.

Appendix B: Solving the Three Segments Problems

1.1 Solving the AJA Problem

In this case the jerk \(J_{a}\) of the first and last segments is null in the Eqs. 3 and 5 that respectively become Eqs. 6 and 7:

$$\begin{array}{@{}rcl@{}} a_{1} &=& \qquad a_{i} \\ v_{1} &=& \qquad a_{i}\times{t_{1}} {+} v_{i} \\ x_{1} &=& \qquad a_{i}\times{t_{1}}^{2}/2 \qquad + v_{i}{\times}t_{1} \end{array} $$
(6)
$$\begin{array}{@{}rcl@{}} a_{f} &=& \qquad a_{2} \\ v_{f} &= & \qquad a_{2}{\times}{t_{3}} {+} v_{2} \\ x_{f} &=& \qquad a_{2}{\times}{t_{3}}^{2}/2 {+} v_{2}{\times}t_{3}\qquad {+} x_{2} \end{array} $$
(7)

Using an algebra system, we obtain the results:

$$\begin{array}{@{}rcl@{}} k_{1} &=& a_{i}{-}a_{f} \\ k_{2} &=& {k_{1}}^{-1} \\ k_{3} &=& a_{i}{\times}(({-}J_{a}{\times}v_{i}){+}{a_{f}}^{2}/2{+}a_{i}{\times}({-}a_{f}{+}a_{i}/2)) \\ k_{4} &=& a_{f}{\times}J_{a}{\times}v_{i} \\ k_{5} &=& 12{\times}{J_{a}}^{2}{\times}{v_{i}}^{2} \\ k_{6} &=& a_{f}{-}a_{i} \\ k_{7} &=& (3{\times}(12{\times}a_{i}{\times}{J_{a}}^{2}{\times}(2{\times}a_{f}{\times}k_{6}{\times}x_{f}{+}k_{1}{\times}{v_{f}}^{2}) \\ &&{+}a_{f}{\times}(a_{i}{\times}(a_{i}{\times}(4{\times}{a_{f}}^{3}{+}a_{i}{\times}(a_{i}{\times}(4{\times}a_{f}{-}a_{i}) \\ &&{-}6{\times}{a_{f}}^{2})){-}(k_{5}{+}{a_{f}^{4}})){+}12{\times}a_{f}{\times}{J_{a}}^{2}{\times}{v_{i}}^{2})))^{0.5}\\ k_{8} &=& k_{6}{\times}{J_{a}}^{-1}\\ k_{9} &=& k_{1}{\times}a_{f} \\ k_{10} &=& 2{\times}J_{a}{\times}v_{f} \\ k_{11} &=& 1/\sqrt{3} \\ k_{12} &=& (k_{6}{\times}(12{\times}a_{i}{\times}{J_{a}}^{2}{\times}(2{\times}a_{f}{\times}x_{f}{-}{v_{f}}^{2}) \\ &&{+}a_{f}{\times}(k_{5}{+}a_{i}{\times}(a_{i}{\times}(3{\times}{a_{f}}^{2}{+}a_{i}{\times}(a_{i}{-}3{\times}a_{f})) \\ &&{-}{a_{f}}^{3}))))^{0.5} \end{array} $$

And finally the system has two solutions (t1, \(t_{2}\), \(t_{3}\)) and (\(t_{1}^{\prime }\), \(t_{2}\), \(t_{3}^{\prime }\)) with:

$$\begin{array}{@{}rcl@{}} t_{1} &=& {a_{i}}^{-1}{\times}k_{2}{\times}{J_{a}}^{-1}{\times}(({-}k_{7}/6){+}k_{4}{+}k_{3}) \\ t_{2} &=& k_{8} \end{array} $$
$$\begin{array}{@{}rcl@{}} t_{3} &=& ({a_{f}}^{-1}{\times}{J_{a}}^{-1}{\times}(k_{11}{\times}k_{2}{\times}k_{12}{+}k_{10}{+}k_{9}))/2 \\ t_{1}^{\prime} &=& {a_{i}}^{-1}{\times}k_{2}{\times}{J_{a}}^{-1}{\times}(k_{7}/6{+}k_{4}{+}k_{3}) \\ t_{3}^{\prime} &=& {a_{f}}^{-1}\times {J_{a}}^{-1}\times ((k_{10}{+}k_{9})/2{-}(k_{11}\times k_{2}\times k_{12})/2) \end{array} $$

1.2 Solving the JJA Problem

The system of polynomial equations to solve is defined by Eqs. 6, 4 and 5. Using an algebra system, we obtain the following result where \(r_{i}\) is one solution of the quartic equation defined by the coefficients \(c_{i}\) with \(0\leq i \leq 4\):

$$\begin{array}{@{}rcl@{}} k_{1} &=& 1 {-} 2 {\times} a_{f} \\ k_{2} &=& 2 {\times} a_{f} \\ k_{3} &=& {a_{f}}^{2} {\times} J_{b} {+} k_{1} {\times} J_{a} \\ c_{4} &=& 3 {\times} {a_{f}}^{4} {\times} {J_{b}}^{4} \\ &&{+} J_{a} {\times} (2 {\times} k_{1} {\times} {a_{f}}^{2} {\times} J_{b} {+} (4 {\times} (a_{f} {-} 1 ) {\times} a_{f} {+} 1 ) {\times} J_{a} ) \!\!\left.\right) \\ c_{3} &=& 4 {\times} a_{f} {\times} J_{b} {\times} \left( \right.\!\! {a_{f}}^{3} {\times} {J_{b}}^{2} \\ &&{+} J_{a} {\times} ((3 {\times} a_{f} {-} 1 ) {\times} J_{a} {-} 3 {\times} {a_{f}}^{2} {\times} J_{b} ) \!\!\left.\right) \\ c_{2} &=& 6 {\times} J_{b} {\times} (2 {\times} J_{a} {\times} k_{3} {\times} v_{i} {+} ((k_{2} {-} 1 ) {\times} J_{a} {-} {a_{f}}^{2} {\times} J_{b} ) {\times} {a_{i}}^{2} ) \\ c_{1} &=& 12 {\times} a_{f} {\times} (2 {\times} J_{a} {\times} (a_{f} {\times} J_{b} {-} J_{a} ) {\times} v_{i} {+} (J_{a} {-} a_{f} {\times} J_{b} ) {\times} {a_{i}}^{2} ) \\ c_{0} &=& 3 {\times} (4 {\times} {J_{a}}^{2} {\times} {v_{i}}^{2} {+} a_{i} {\times} (4 {\times} J_{a} {\times} (k_{2} {-} a_{i} ) {\times} v_{i} {+} {a_{i}}^{3} ) ) \\ &&{+} 4 {\times} (3 {\times} {J_{a}}^{2} {\times} (2 {\times} a_{f} {\times} x_{f} {-} {v_{f}}^{2} ) {-} 2 {\times} a_{f} {\times} {a_{i}}^{3} ) \\ t1 &=& {-}{J_{a}}^{-1} {\times} (a_{i} {+} a_{f} {\times} J_{b} {\times} r_{i} ) \\ t2 &=& r_{i} \\ t3 &=\phantom{0}& {-}\frac{{Ja}^{-1} {\times} (2 {\times} Ja {\times} v_{i} - ({a_{i}}^{2} {+} 2 {\times} Ja {\times} v_{f} ) {+} J_{b} {\times} k_{3} {\times} {r_{i}}^{2} ) }{ 2 {\times} a_{f} } \end{array} $$

1.3 Solving the AJJ Problem

An AJJ system can be solved similarly as a JJA one or using a symmetry with respect to the acceleration axis to build an equivalent JJA system.

Appendix C: Derivative of the Cubic Polynomial Functions

The derivatives of the functions \(x_{f}, v_{f}\) and \(a_{f}\) relatively to the three times \(t_{1}, t_{2}\) and \(t_{3}\) can be grouped in a matrix. The newton method uses the inverse of this matrix to compute the times increments that, at the first oder, compensate the errors of the functions.

$$\begin{array}{@{}rcl@{}} \left( \begin{array}{ccc} {\frac{\partial x_{f}}{\partial t_{1}}} & \frac{\partial x_{f}}{\partial t_{2}} & \frac{\partial x_{f}}{\partial t_{3}} \\ \frac{\partial v_{f}}{\partial t_{1}} & \frac{\partial v_{f}}{\partial t_{2}} & \frac{\partial v_{f}}{\partial t_{3}} \\ \frac{\partial a_{f}}{\partial t_{1}} & \frac{\partial a_{f}}{\partial t_{2}} & \frac{\partial a_{f}}{\partial t_{3}} \end{array} \right) = \left( \begin{array}{ccc} lx_{1} & lv_{1} & la_{1} \\ lx_{2} & lv_{2} & la_{2} \\ lx_{3} & lv_{3} & la_{3} \end{array} \right)^{-1} \end{array} $$

In the JJJ case defined by the Eqs. 3, 4 and 5, using an algebraic calculator we obtain:

$$\begin{array}{@{}rcl@{}} k_{1} &=& J_{a}{\times}t_{1} \\ k_{2} &= &J_{b}{\times}t_{2} \\ k_{3} &=& J_{a}{\times}t_{3} \\ k_{4} &=& a_{i}{+}k_{3}{+}k_{2}{+}k_{1} \\ k_{5} &=& a_{i}{+}J_{b}{\times}(t_{3}{+}t_{2}){+}k_{1} \\ k_{6} &=& J_{a}{\times}k_{5}{-}J_{b}{\times}k_{4} \\ k_{7} &=& {t_{1}}^{2} \\ k_{8} &=& {t_{2}}^{2} \\ k_{9} &=& {t_{3}}^{2} \\ k_{10} &=& (J_{a}{\times}(k_{9}{+}k_{8}{+}k_{7}))/2 \\ k_{11} &=& t_{1}{\times}a_{i} \\ k_{12} &=& t_{2}{\times}(a_{i}{+}k_{1}) \\ k_{13} &=& t_{3}{\times}(a_{i}{+}J_{a}{\times}(t_{2}{+}t_{1})) \\ k_{14} &=& v_{i}{+}k_{13}{+}k_{12}{+}k_{11}{+}k_{10} \\ k_{15} &=& a_{i}{+}J_{a}{\times}(t_{3}{+}t_{2}{+}t_{1}) \\ k_{16} &=& J_{b}{\times}k_{15}{-}J_{a}{\times}k_{5} \\ k_{17} &=& J_{a}{\times}k_{7} \\ k_{18} &=& J_{a}{\times}k_{9}{+}J_{b}{\times}k_{8}{+}k_{17} \\ k_{19} &=& t_{3}{\times}(a_{i}{+}k_{2}{+}k_{1}) \\ k_{20} &=& v_{i}{+}k_{19}{+}k_{12}{+}k_{11}{+}k_{18}/2 \\ k_{21} &=& ({-}k_{15}){+}a_{i}{+}k_{3}{+}k_{2}{+}k_{1} \\ k_{22} &=& v_{i}{+}k_{19}{+}k_{12}{+}k_{11}{+}(J_{b}{\times}(k_{9}{+}k_{8}){+}k_{17})/2 \\ k_{23} &=& 1/(J_{a}{\times}k_{21}{\times}k_{22}{+}k_{16}{\times}k_{20}{+}k_{6}{\times}k_{14}) \\ lx_{1} &=& k_{6}{\times}k_{23} \\ lv_{1} &=& (J_{b}{\times}k_{20}{-}J_{a}{\times}k_{22}){\times}k_{23} \\ la_{1} &=& (k_{4}{\times}k_{22}{-}k_{5}{\times}k_{20}){\times}k_{23}\!\!\left.\right] \\ lx_{2} &=& J_{a}{\times}k_{21}{\times}k_{23} \\ lv_{2} &=& J_{a}{\times}({-}(k_{19}{+}k_{12}{+}k_{11} {-}({-}k_{18}/2))\\ &&{+}k_{13}{+}k_{12}{+}k_{11}{+}k_{10}){\times}k_{23} \\ la_{2} &=& (k_{15}{\times}k_{20}{-}k_{4}{\times}k_{14}){\times}k_{23}\!\!\left.\right] \\ lx_{3} &=& k_{16}{\times}k_{23} \\ lv_{3} &=& (J_{a}{\times}k_{22}{-}J_{b}{\times}k_{14}){\times}k_{23} \\ la_{3} &=& (k_{5}{\times}k_{14}{-}k_{15}{\times}k_{22}){\times}k_{23}\!\!\left.\right])) \end{array} $$

The computation is done similarly in the case of AJA, AJJ and JJA sequences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidobre, D., Desormeaux, K. Smooth Cubic Polynomial Trajectories for Human-Robot Interactions. J Intell Robot Syst 95, 851–869 (2019). https://doi.org/10.1007/s10846-018-0936-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-018-0936-z

Keywords

Navigation