iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s10827-012-0420-x
Information coding in a laminar computational model of cat primary visual cortex | Journal of Computational Neuroscience Skip to main content

Advertisement

Log in

Information coding in a laminar computational model of cat primary visual cortex

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Neural populations across cortical layers perform different computational tasks. However, it is not known whether information in different layers is encoded using a common neural code or whether it depends on the specific layer. Here we studied the laminar distribution of information in a large-scale computational model of cat primary visual cortex. We analyzed the amount of information about the input stimulus conveyed by the different representations of the cortical responses. In particular, we compared the information encoded in four possible neural codes: (1) the information carried by the firing rate of individual neurons; (2) the information carried by spike patterns within a time window; (3) the rate-and-phase information carried by the firing rate labelled by the phase of the Local Field Potentials (LFP); (4) the pattern-and-phase information carried by the spike patterns tagged with the LFP phase. We found that there is substantially more information in the rate-and-phase code compared with the firing rate alone for low LFP frequency bands (less than 30 Hz). When comparing how information is encoded across layers, we found that the extra information contained in a rate-and-phase code may reach 90 % in Layer 4, while in other layers it reaches only 60 %, compared to the information carried by the firing rate alone. These results suggest that information processing in primary sensory cortices could rely on different coding strategies across different layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adrian, E. (1928). The basis of sensations. New York: Norton.

    Google Scholar 

  • Basalyga, G., & Wennekers, T. (2009). Large-scale computational model of cat primary visual cortex. BMC Neuroscience, 10(Suppl 1), p358.

  • Belitski, A., et al. (2008). Low-frequency local field potentials and spikes in primary visual cortex convey independent visual information. Journal of Neuroscience, 28(22), 5696–5709.

    Article  CAS  PubMed  Google Scholar 

  • Berens, P., et al. (2008). Comparing the feature selectivity of the gamma-band of the local field potential and the underlying spiking activity in primate visual cortex. Frontiers in Systems Neuroscience, 2(2), 2.

    PubMed  Google Scholar 

  • Bialek, W., et al. (1991). Reading a neural code. Science, 252(5014), 1854–1857.

    Article  CAS  PubMed  Google Scholar 

  • Brette, R., et al. (2007). Simulation of networks of spiking neurons: a review of tools and strategies. Journal of Computational Neuroscience, 23(3), 349–398.

    Article  PubMed  Google Scholar 

  • Buzas, P., et al. (2006). Model-based analysis of excitatory lateral connections in the visual cortex. Journal of Comparative Neurology, 499(6), 861–881.

    Article  PubMed  Google Scholar 

  • Carnevale, N.T., & Hines, M.L. (2006). The NEURON book. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Cover, T.M., & Thomas, J.A. (1991). Elements of information theory. New York: Wiley.

    Book  Google Scholar 

  • de Ruyter van Steveninck, R.R., et al. (1997). Reproducibility and variability in neural spike trains. Science, 275(5307), 1805–1808.

    Article  CAS  PubMed  Google Scholar 

  • DeAngelis, G.C., et al. (1999). Functional micro-organization of primary visual cortex: receptive field analysis of nearby neurons. Journal of Neuroscience, 19(10), 4046–4064.

    CAS  PubMed  Google Scholar 

  • Destexhe, A., et al. (2001). LTS cells in cerebral cortex and their role in generating spike-and-wave oscillations. Neurocomputing, 38, 555–563.

    Article  Google Scholar 

  • Destexhe, A., et al. (1996). In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons. Journal of Neuroscience, 16(1), 169–185.

    CAS  PubMed  Google Scholar 

  • Destexhe, A., et al. (1998). Dendritic low-threshold calcium currents in thalamic relay cells. Journal of Neuroscience, 18(10), 3574–3588.

    CAS  PubMed  Google Scholar 

  • Engel, A.K., et al. (1990). Stimulus-dependent neuronal oscillations in cat visual cortex: inter-columnar interaction as determined by cross-correlation analysis. European Journal of Neuroscience, 2(7), 588–606.

    Article  PubMed  Google Scholar 

  • Gilbert, C.D. (1977). Laminar differences in receptive field properties of cells in cat primary visual cortex. Journal of Physiology, 268(2), 391–421.

    CAS  PubMed  Google Scholar 

  • Grossberg, S., & Versace, M. (2008). Spikes, synchrony, and attentive learning by laminar thalamocortical circuits. Brain Research, 1218(4), 278–312.

    Article  CAS  PubMed  Google Scholar 

  • Haeusler, S., & Maass, W. (2007). A statistical analysis of information processing properties of lamina-specific cortical microcircuit models. Cerebral Cortex, 17(1), 149–162.

    Article  PubMed  Google Scholar 

  • Hellwig, B. (2000). A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biological Cybernetics, 82(2), 111–121.

    Article  CAS  PubMed  Google Scholar 

  • Hill, S., & Tononi, G. (2004). Modeling sleep and wakefulness in the thalamocortical system. Journal of Neurophysiology, 93(3), 1671–1698.

    Article  PubMed  Google Scholar 

  • Hines, M.L., & Carnevale, N.T. (2008). Translating network models to parallel hardware in NEURON. Journal of Neuroscience Methods, 169(2), 425–455.

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin, A.L., & Huxley, A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117(4), 500–544.

    CAS  PubMed  Google Scholar 

  • Holmgren, C., et al. (2003). Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. Journal of Physiology, 551, 139–153.

    Article  CAS  PubMed  Google Scholar 

  • Holt, G.R., & Koch, C. (1999). Electrical interactions via the extracellular potential near cell bodies. Journal of Computational Neuroscience, 6(2), 169–184.

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich, E.M., & Edelman, G.M. (2008). Large-scale model of mammalian thalamocortical systems. Proceedings of the National Academy of Science (USA), 105(9), 3593–3598.

    Article  CAS  Google Scholar 

  • Katzner, S., et al. (2009). Local origin of field potentials in visual cortex. Neuron, 61(1), 35–41.

    Article  CAS  PubMed  Google Scholar 

  • Kayser, C., et al. (2009). Spike-phase coding boosts and stabilizes information carried by spatial and temporal spike patterns. Neuron, 61(4), 597–608.

    Article  CAS  PubMed  Google Scholar 

  • Kruse, W., & Eckhorn, R. (1996). Inhibition of sustained gamma oscillations (35–80 Hz) by fast transient responses in cat visual cortex. Proceedings of the National Academy of Sciences, 93(12), 6112–6117.

    Article  CAS  Google Scholar 

  • Lindén, H., et al. (2011). Modeling the spatial reach of the LFP. Neuron, 72(5), 859–872.

    Article  PubMed  Google Scholar 

  • Logothetis, N.K., et al. (2007). In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation. Neuron, 55(5), 809–23.

    Article  CAS  PubMed  Google Scholar 

  • Markram, H. (2006). The blue brain project. Nature Reviews Neuroscience, 7(2), 153–160.

    Article  CAS  PubMed  Google Scholar 

  • Mazzoni, A., et al. (2011). Cortical dynamics during naturalistic sensory stimulations: experiments and models. Journal of Physiology Paris, 105(1–3), 2–15.

    Article  Google Scholar 

  • Mazzoni, A., et al. (2008). Encoding of naturalistic stimuli by local field potential spectra in networks of excitatory and inhibitory neurons. PLoS Computational Biology, 4(12), e1000239.

    Article  PubMed  Google Scholar 

  • Migliore, M., et al. (2006). Parallel network simulations with NEURON. Journal of Computational Neuroscience, 21(1), 119–129.

    Article  CAS  PubMed  Google Scholar 

  • Miikkulainen, R., et al. (2005). Computational maps in the visual cortex. Berlin, New York: Springer.

    Google Scholar 

  • Montemurro, M.A., et al. (2007a). Role of precise spike timing in coding of dynamic vibrissa stimuli in somatosensory thalamus. Journal of Neurophysiology, 98(4), 1871–1882.

    Article  PubMed  Google Scholar 

  • Montemurro, M.A., et al. (2007b). Tight data-robust bounds to mutual information combining shuffling and model selection techniques. Neural Computation, 19(11), 2913–2957.

    Article  CAS  PubMed  Google Scholar 

  • Montemurro, M.A., et al. (2008). Phase-of-firing coding of natural visual stimuli in primary visual cortex. Current Biology, 18(5), 375–380.

    Article  CAS  PubMed  Google Scholar 

  • Nordlie, E., et al. (2009). Towards reproducible descriptions of neuronal network models. PLoS Computational Biology, 5(8), e1000456.

    Article  PubMed  Google Scholar 

  • O’Keefe, J., & Recce, M.L. (1993). Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus, 3(3), 317–330.

    Article  PubMed  Google Scholar 

  • Onat, S., et al. (2011). Natural scene evoked population dynamics across cat primary visual cortex captured with voltage-sensitive dye imaging. Cerebral Cortex, 21(11), 2542–2554.

    Article  PubMed  Google Scholar 

  • Panzeri, S., et al. (2007). Correcting for the sampling bias problem in spike train information measures. Journal of Neurophysiology, 98(3), 1064–1072.

    Article  PubMed  Google Scholar 

  • Pettersen, K.H., & Einevoll, G.T. (2008). Amplitude variability and extracellular low-pass filtering of neuronal spikes. Biophysical Journal, 94(3), 784–802.

    Article  CAS  PubMed  Google Scholar 

  • Pospischil, M., et al. (2008). Minimal Hodgkin-Huxley type models for different classes of cortical and thalamic neurons. Biological Cybernetics, 99(4–5), 427–441.

    Article  PubMed  Google Scholar 

  • Protopapas, A.D., et al. (1999). Simulating large networks of neurons. In C. Koch, & I. Sefev (Eds.), Methods in neuronal modeling from ions to networks (chapter 12, pp. 461–498). Cambridge, MA: MIT Press.

    Google Scholar 

  • Rasch, M.J., et al. (2011). Statistical comparison of spike responses to natural stimuli in monkey area V1 with simulated responses of a detailed laminar network model for a patch of V1. Journal of Neurophysiology, 105(2), 757–778.

    Article  PubMed  Google Scholar 

  • Salinas, E., & Sejnowski, T.J. (2001). Correlated neuronal activity and the flow of neural information. Nature Review Neuroscience, 2(8), 539–550.

    Article  CAS  Google Scholar 

  • Shadlen, M.N., & Newsome, W.T. (1998). The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. Journal of Neuroscience, 18(10), 3870–3896.

    CAS  PubMed  Google Scholar 

  • Shannon, C.E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 379–423, 623–656.

  • Sillito, A.M., & Jones, H.E. (2002). Corticothalamics interactions in the transfer of visual information. Philosophical Transactions of the Royal Society London B, 357(1428), 1739–1752.

    Article  Google Scholar 

  • Skottun, B.C., et al. (1991). Classifying simple and complex cells on the basis of response modulation. Vision Research, 31(7–8), 1078–1086.

    Article  Google Scholar 

  • Strong, S.P., et al. (1998). Entropy and information in neural spike trains. Physical Review Letters, 80(1), 197–200.

    Article  CAS  Google Scholar 

  • Szymanski, F.D., et al. (2011). The laminar and temporal structure of stimulus information in the phase of field potentials of auditory cortex. Journal of Neuroscience, 31(44), 15787–15801.

    Article  CAS  PubMed  Google Scholar 

  • Thomson, A.M., & Lamy, C. (2007). Functional maps of neocortical local circuitry. Frontiers in Neurocsience, 1(1), 19–42.

    Article  CAS  Google Scholar 

  • Tiesinga, P., et al. (2008). Regulation of spike timing in visual cortical circuits. Nature Reviews Neuroscience, 9(2), 97–107.

    Article  CAS  PubMed  Google Scholar 

  • Traub, R.D., et al. (2005). Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. Journal of Neurophysiology, 93(4), 2194–2232.

    Article  PubMed  Google Scholar 

  • Traub, R.D., & Miles, R. (1991). Neuronal networks of the hippocampus. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Tsodyks, M., et al. (1998). Neural networks with dynamic synapses. Neural Computation, 10(4), 821–835.

    Article  CAS  PubMed  Google Scholar 

  • Tsodyks, M., et al. (2000). Synchrony generation in recurrent networks with frequency-dependent synapses. Journal of Neuroscience, 20(1), 1–5.

    Google Scholar 

  • Ursino, M., & Cara, G.E.L. (2006). Travelling waves and EEG patterns during epileptic seizure: analysis with an integrate-and-fire neural network. Journal of Theoretical Biology, 242(1), 171–187.

    Article  PubMed  Google Scholar 

  • Wohrer, A., & Kornprobst, P. (2009). Virtual retina: a biological retina model and simulator, with contrast gain control. Journal of Computational Neuroscience, 26(2), 219–249.

    Article  PubMed  Google Scholar 

  • Xing, D., et al. (2009). Spatial spread of the local field potential and its laminar variation in visual cortex. Journal of Neuroscience, 29(37), 11540–11549.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by EPSRC research grant EP/C010841/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gleb Basalyga.

Additional information

Action Editor: Gaute T Einevoll

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basalyga, G., Montemurro, M.A. & Wennekers, T. Information coding in a laminar computational model of cat primary visual cortex. J Comput Neurosci 34, 273–283 (2013). https://doi.org/10.1007/s10827-012-0420-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-012-0420-x

Keywords

Navigation