iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s10827-011-0353-9
Accuracy evaluation of numerical methods used in state-of-the-art simulators for spiking neural networks | Journal of Computational Neuroscience Skip to main content

Advertisement

Log in

Accuracy evaluation of numerical methods used in state-of-the-art simulators for spiking neural networks

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

With the various simulators for spiking neural networks developed in recent years, a variety of numerical solution methods for the underlying differential equations are available. In this article, we introduce an approach to systematically assess the accuracy of these methods. In contrast to previous investigations, our approach focuses on a completely deterministic comparison and uses an analytically solved model as a reference. This enables the identification of typical sources of numerical inaccuracies in state-of-the-art simulation methods. In particular, with our approach we can separate the error of the numerical integration from the timing error of spike detection and propagation, the latter being prominent in simulations with fixed timestep. To verify the correctness of the testing procedure, we relate the numerical deviations to theoretical predictions for the employed numerical methods. Finally, we give an example of the influence of simulation artefacts on network behaviour and spike-timing-dependent plasticity (STDP), underlining the importance of spike-time accuracy for the simulation of STDP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The original Crank–Nicolson method solves semi-discretized partial differential equation systems by replacing the derivatives with respect to both independent dimensions in a particular way by finite difference ratios and evaluating the solution numerically using the trapezoidal rule, cf. Crank and Nicolson (1947). However, in the literature the phrase “Crank–Nicolson method” is used unspecifically, sometimes even indicating just the trapezoidal rule or the midpoint rule.

References

  • Arnol’d, V. I. (1978). Ordinary differential equations. Cambridge: MIT Press.

    Google Scholar 

  • Bhalla, U. S., Bilitcha, D. H., & Bowera, J. M. (1992). Rallpacks: A set of benchmarks for neuronal simulators. Trends in Neurosciences, 15, 453–458.

    Article  PubMed  CAS  Google Scholar 

  • Brenan, K. E., Campbell, S. L., & Petzold, L. R. (1989). Numerical solution of initial-value problems in differential-algebraic equations. Society for Industrial Mathematics.

  • Brette, R. (2006). Exact simulation of integrate-and-fire models with synaptic conductances. Neural Computation, 18, 2004–2027.

    Article  PubMed  Google Scholar 

  • Brette, R., Rudolph, M., et al. (2007). Simulation of networks of spiking neurons: A review of tools and strategies. Journal of Computational Neuroscience, 23(3), 349–398.

    Article  PubMed  Google Scholar 

  • Brown, P., Hindmarsh, A., & Petzold, L. (1998). Consistent initial condition calculation for differential-algebraic systems. SIAM Journal on Scientific Computing, 19(5), 1495–1512.

    Article  Google Scholar 

  • Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Computational Neuroscience, 8, 183–208.

    Article  PubMed  CAS  Google Scholar 

  • Butera, R. J., & McCarthy, M. L. (2004). Analysis of real-time numerical integration methods applied to dynamic clamp experiments. Journal of Neural Engineering, 1, 187–194.

    Article  PubMed  Google Scholar 

  • Carnevale, N., & Hines, M. (2006). The NEURON book. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Crank, J., & Nicolson, P. (1947). A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Advances in Computational Mathematics, 6(1), 207–226.

    Article  Google Scholar 

  • Curtiss, C. F., & Hirschfelder, J. O. (1952). Integration of stiff equations. Proceedings of the National Academy of Sciences of the United States of America, 38(3), 235–243.

    Article  PubMed  CAS  Google Scholar 

  • Davison, A., Brüderle, D., Eppler, J., Kremkow, J., Mueller, E., Pecevski, D., et al. (2009). PyNN: A common interface for neuronal network simulators. Frontiers in Neuroinformatics 2(11), 1–10. doi:10.3389/neuro.11.011.2008.

    Google Scholar 

  • Gear, C., Hsu, H., & Petzold, L. (1981). Differential-algebraic equations revisited. In Proceedings in numerical methods for solving stiff initial value problems. Oberwolfach.

  • Gear, C. W. (1971). Numerical initial value problems in ordinary differential equations. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Gerstner, W., & Kistler, W. (2002). Spiking neuron models: Single neurons, populations, plasticity. Cambridge: Cambridge University Press.

    Google Scholar 

  • Gewaltig, M., & Diesmann, M. (2007). NEST. Scholarpedia, 2(4), 1430.

    Article  Google Scholar 

  • Goodman, D., & Brette, R. (2009). The Brian simulator. Frontiers in Neuroscience, 3(2), 192–197.

    Article  PubMed  Google Scholar 

  • Hairer, E., Nørsett, S. P., & Wanner, G. (1993). Solving ordinary differential equations I: Nonstiff problems. New York: Springer.

    Google Scholar 

  • Hairer, E., & Wanner, G. (2002). Solving ordinary differential equations II: Stiff and differential-algebraic problems. New York: Springer.

    Google Scholar 

  • Henrici, P. (1962). Discrete variable methods in ordinary differential equations. New York: Wiley.

    Google Scholar 

  • Heun, K. (1900). Neue Methode zur approximativen Integration der Differentialgleichungen einer unabhängigen Variable. Zeitschrift für Mathematik und Physik, 45, 23–38.

    Google Scholar 

  • Hiebert, K. L., & Shampine, L. F. (1980). Implicitly defined output points for solutions of ODEs. Sandia Report SAND80-0180.

  • Hindmarsh, A. C. (1983). ODEPACK, a systematized collection of ODE solvers. IMACS Transactions on Scientific Computation, 1, 55–64.

    Google Scholar 

  • Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker, D. E., et al. (2005). SUNDIALS, suite of nonlinear and differential/algebraic equation solvers. ACM Transactions on Mathematical Software, 31, 363–396.

    Article  Google Scholar 

  • Jolivet, R., Schürmann, F., Berger, T., Naud, R., Gerstner, W., & Roth, A. (2008). The quantitative single-neuron modeling competition. Biological Cybernetics, 99, 417–426.

    Article  PubMed  Google Scholar 

  • Kahaner, D., Lawkins, W., & Thompson, S. (1989). On the use of rootfinding ODE software for the solution of a common problem in nonlinear dynamical systems. Journal of Computational and Applied Mathematics, 28, 219–230.

    Article  Google Scholar 

  • Koch, C., & Segev, I. (1998). Methods in neuronal modeling: From ions to networks. Cambridge: MIT Press.

    Google Scholar 

  • Kumar, A., Schrader, S., Aertsen, A., & Rotter, S. (2008). The high-conductance state of cortical networks. Neural Computation, 20, 1–43. doi:10.1162/neco.2008.20.1.1.

    Article  PubMed  Google Scholar 

  • Kundert, K. S. (1995). The designer’s guide to Spice and Spectre. Norwell: Kluwer Academic.

    Google Scholar 

  • Kutta, M. (1901). Beitrag zur näherungsweisen Integration totaler Differentialgleichungen. Zeitschrift für Mathematik und Physik, 46, 435–452.

    Google Scholar 

  • Lax, P. D., & Richtmyer, R. D. (1956). Survey of the stability of linear finite difference equations. Communications on Pure and Applied Mathematics, 9, 267–293.

    Article  Google Scholar 

  • Lundqvist, M., Rehn, M., Djurfeldt, M., & Lansner, A. (2006). Attractor dynamics in a modular network model of neocortex. Network: Computation in Neural Systems, 17(3), 253–276.

    Article  Google Scholar 

  • Maass, W., Natschläger, T., & Markram, H. (2002). Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation, 14(11), 2531–2560.

    Article  PubMed  Google Scholar 

  • Mangoldt, H. V., & Knopp, K. (1958). Einführung in die Höhere Mathematik, Bd. III. Stuttgart: Hirzel.

    Google Scholar 

  • Masuda, N., & Kori, H. (2007). Formation of feedforward networks and frequency synchrony by spike-timing-dependent plasticity. Journal of Computational Neuroscience, 22, 327–345.

    Article  PubMed  Google Scholar 

  • Mattia, M., & Del Giudice, P. (2000). Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses. Neural Computation, 12, 2305–2329.

    Article  PubMed  CAS  Google Scholar 

  • Mayr, C., Partzsch, J., & Schüffny, R. (2010). Rate and pulse based plasticity governed by local synaptic state variables. Frontiers in Computational Neuroscience, 2, 1–28. doi:10.3389/fnsyn.2010.00033.

    Google Scholar 

  • Mehring, C., Hehl, U., Kubo, M., Diesmann, M., & Aertsen, A. (2003). Activity dynamics and propagation of synchronous spiking in locally connected random networks. Biological Cybernetics, 88, 395–408.

    Article  PubMed  Google Scholar 

  • Morrison, A., Diesmann, M., & Gerstner, W. (2008). Phenomenological models of synaptic plasticity based on spike timing. Biological Cybernetics, 98, 459–478.

    Article  PubMed  Google Scholar 

  • Morrison, A., Mehring, C., Geisel, T., Aertsen, A., & Diesmann, M. (2005). Advancing the boundaries of high-connectivity network simulation with distributed computing. Neural Computation, 17, 1776–1801.

    Article  PubMed  Google Scholar 

  • Morrison, A., Straube, S., Plesser, H., & Diesmann, M. (2007). Exact subthreshold integration with continuous spike times in discrete-time neural network simulations. Neural Computation, 19, 47–79.

    Article  PubMed  Google Scholar 

  • Naud, R., Marcille, N., Clopath, C., & Gerstner, W. (2008). Firing patterns in the adaptive exponential integrate-and-fire model. Biological Cybernetics, 99, 335–347.

    Article  PubMed  Google Scholar 

  • Pecevski, D., Natschläger, T., & Schuch, K. (2009). PCSIM: A parallel simulation environment for neural circuits fully integrated with Python. Frontiers on Neuroinformatics, 3(11), 1–15. doi:10.3389/neuro.11.011.2009.

    Google Scholar 

  • Pfister, J. P., & Gerstner, W. (2006). Triplets of spikes in a model of spike timing-dependent plasticity. Journal of Neuroscience, 26(38), 9673–9682.

    Article  PubMed  CAS  Google Scholar 

  • Rodgers, J. L., & Nicewander, W. A. (1988). Thirteen ways to look at the correlation coefficient. The American Statistician, 42, 59–66.

    Article  Google Scholar 

  • Rotter, S., & Diesmann, M. (1999). Exact digital simulation of time-invariant linear systems with applications to neuronal modeling. Biological Cybernetics, 81, 381–402.

    Article  PubMed  CAS  Google Scholar 

  • Rudolph, M., & Destexhe, A. (2006). How much can we trust neural simulation strategies? Neurocomputing, 70(2007), 1966–1969.

    Google Scholar 

  • Runge, C. (1895). Über die numerische Auflösung von Differentialgleichungen. Mathematische Annalen, XLVI, 167–178.

    Article  Google Scholar 

  • Shelley, M., & Tao, L. (2001). Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks. Journal of Computational Neuroscience, 11, 111–119.

    Article  PubMed  CAS  Google Scholar 

  • Song, S., Miller, K., & Abbott, L. (2000). Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience, 3(9), 919–926.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, S., & Tuttle, P. (1984). Event detection in continuous simulation. In Proceedings of the international conference on power plant simulation (pp. 341–345).

Download references

Acknowledgements

The research leading to these results has received funding from the European Union 7th Framework Programme (FP7/2007-2013) under grant agreement no. 269921 (BrainScaleS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Partzsch.

Additional information

Action Editor: Alain Destexhe

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(ZIP 1.58 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henker, S., Partzsch, J. & Schüffny, R. Accuracy evaluation of numerical methods used in state-of-the-art simulators for spiking neural networks. J Comput Neurosci 32, 309–326 (2012). https://doi.org/10.1007/s10827-011-0353-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-011-0353-9

Keywords

Navigation