iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s10822-015-9881-0
Insights into resistance mechanism of the macrolide biosensor protein MphR(A) binding to macrolide antibiotic erythromycin by molecular dynamics simulation | Journal of Computer-Aided Molecular Design Skip to main content
Log in

Insights into resistance mechanism of the macrolide biosensor protein MphR(A) binding to macrolide antibiotic erythromycin by molecular dynamics simulation

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Macrolide biosensor protein MphR(A) has been known as a key regulatory protein in metabolite sensing and genetic expression regulating. MphR(A) protein binds to macrolide antibiotic erythromycin (Ery) and releases the gene operon, thus activates expression of the mphA gene and initiates Ery resistance. The two mutant amino acid residues (V66L and V126L) might potentially disrupt Ery binding to MphR(A). In these studies, the binding of macrolide antibiotic Ery to wild type (Wt) MphR(A) and double mutant (V66L/V126L) MphR(A) are explored by molecular dynamics simulations. Compared to the Apo-MphR(A) protein and Wt-MphR(A)–Ery complex, many interesting effects owing to the double mutant (V66L/V126L) are discovered. In the case of Ery, Helix I which plays an important role in transcription shows itself a right-hand α helix in Wt-MphR(A)–Ery, whereas the activated helix is broken down in double mutant-V66L/V126L-MphR(A)–Ery. The calculated results exhibit that the double mutant V66L/V126L reduces the binding affinity of the V66L/V126L-MphR(A) to Ery, resulting in the block of Ery resistance. The binding free energy decomposition analysis reveals that the decrease of the binding affinity for the variant V66L/V126L-MphR(A)–Ery is mainly attributed to the gas phase electrostatic energies. The residue Leu66, Thr154, and Arg122 enhance the binding affinity of V66L/V126L-MphR(A) to Ery. The residues Tyr103 and His147 contributes mainly to binding energies in the Wt-MphR(A)–Ery complex, whereas the two residues have no contribution to the binding free energy inV66L/V126L-MphR(A)–Ery complex. Our study gives useful insights into the nature of amino acids mutation effect, the mechanism of blocking drug resistance at the atomic level and the characteristics in binding affinity for Ery to double mutant (V66L/V126L) MphR(A), which will contribute to the design of more effective macrolide antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Beatson SA, Walker MJ (2014) Tracking antibiotic resistance. Science 345(6203):1454–1455

    Article  CAS  Google Scholar 

  2. Gopinath S et al (2014) Role of disease-associated tolerance in infectious superspreaders. Proc Natl Acad Sci USA 111(44):15780–15785

    Article  CAS  Google Scholar 

  3. Takakusagi K et al (2015) Multimodal biopanning of T7 phage-displayed peptides reveals angiomotin as a potential receptor of the anti-angiogenic macrolide Roxithromycin. Eur J Med Chem 90:809–821

    Article  CAS  Google Scholar 

  4. Waters V, Ratjen F (2014) Antibiotic treatment for nontuberculous mycobacteria lung infection in people with cystic fibrosis. Cochrane Database Syst Rev (12):CD010004

  5. Al-Taie O, Al-Taie E, Fischbach W (2014) Patients with Helicobacter pylori negative gastric marginal zone b-cell lymphoma (MZBCL) of MALT have a good prognosis. Z Gastroenterol 52(12):1389–1393

    Article  CAS  Google Scholar 

  6. Zheng JT et al (2009) Structure and function of the macrolide biosensor protein, MphR(A), with and without erythromycin. J Mol Biol 387(5):1250–1260

    Article  CAS  Google Scholar 

  7. Poor AE et al (2014) Control of multi-drug-resistant pathogens with non-thermal-plasma-treated alginate wound dressing. Surgical Infections 15(3):233–243

    Article  Google Scholar 

  8. Szczepanowski R et al (2007) Novel macrolide resistance module carried by the IncP-1 beta resistance plasmid pRSB111, isolated from a wastewater treatment plant. Antimicrob Agents Chemother 51(2):673–678

    Article  CAS  Google Scholar 

  9. Schumacher MA et al (2001) Structural mechanisms of QacR induction and multidrug recognition. Science 294(5549):2158–2163

    Article  CAS  Google Scholar 

  10. Fuentes MAF et al (2014) Antimicrobial resistance determinants in antibiotic and biocide-resistant gram-negative bacteria from organic foods. Food Control 37:9–14

    Article  Google Scholar 

  11. Marti E, Balcazar JL (2012) Multidrug resistance-encoding plasmid from Aeromonas sp strain P2G1. Clin Microbiol Infect 18(9):E366–E368

    Article  CAS  Google Scholar 

  12. Kannan K, Vazquez-Laslop N, Mankin AS (2012) Selective protein synthesis by ribosomes with a drug-obstructed exit tunnel. Cell 151(3):508–520

    Article  CAS  Google Scholar 

  13. Noguchi N et al (2000) Regulation of transcription of the mph(A) gene for macrolide 2′-phosphotransferase I in Escherichia coli: characterization of the regulatory gene mphR(A). J Bacteriol 182(18):5052–5058

    Article  CAS  Google Scholar 

  14. Yu HY et al. (2011) Novel Regulator MphX represses activation of phenol hydroxylase genes caused by a XylR/DmpR-type regulator MphR in Acinetobacter calcoaceticus. Plos One 6(3):e17350

    Article  CAS  Google Scholar 

  15. Petersson GA et al (2003) On the optimization of Gaussian basis sets. J Chem Phys 118(3):1101–1109

    Article  CAS  Google Scholar 

  16. Kodchakorn K et al (2014) GPU accelerated molecular dynamics simulations for protein-protein interaction of ankyrin complex. Integr Ferroelectr 156(1):137–146

    Article  CAS  Google Scholar 

  17. Case DA et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688

    Article  CAS  Google Scholar 

  18. Spasic A, Serafini J, Mathews DH (2012) The amber ff99 force field predicts relative free energy changes for RNA helix formation. J Chem Theory Comput 8(7):2497–2505

    Article  CAS  Google Scholar 

  19. Li D et al (2014) Investigation on the mechanism for the binding and drug resistance of wild type and mutations of G86 residue in HIV-1 protease complexed with Darunavir by molecular dynamic simulation and free energy calculation. J Mol Model 20(2):2122

    Article  Google Scholar 

  20. Nikitin AM, Milchevskiy YV, Lyubartsev AP (2014) A new AMBER-compatible force field parameter set for alkanes. J Mol Model 20(3):2143

    Article  Google Scholar 

  21. Salomon-Ferrer R, Case DA, Walker RC (2013) An overview of the Amber biomolecular simulation package. Wiley Interdiscip Rev Comput Mol Sci 3(2):198–210

    Article  CAS  Google Scholar 

  22. Steinbrecher T, Latzer J, Case DA (2012) Revised AMBER parameters for bioorganic phosphates. J Chem Theory Comput 8(11):4405–4412

    Article  CAS  Google Scholar 

  23. Pearlman DA et al (1995) Amber, a package of computer-programs for applying molecular mechanics, normal-mode analysis, molecular-dynamics and free-energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun 91(1–3):1–41

    Article  CAS  Google Scholar 

  24. Simonson T, Carlsson J, Case DA (2004) Proton binding to proteins: pK(a) calculations with explicit and implicit solvent models. J Am Chem Soc 126(13):4167–4180

    Article  CAS  Google Scholar 

  25. Greenidge PA et al (2013) MM/GBSA binding energy prediction on the PDBbind data set: successes, failures, and directions for further improvement. J Chem Inf Model 53(1):201–209

    Article  CAS  Google Scholar 

  26. Godschalk F et al (2013) Comparison of MM/GBSA calculations based on explicit and implicit solvent simulations. Phys Chem Chem Phys 15(20):7731–7739

    Article  CAS  Google Scholar 

  27. Singh MK, Dominy BN (2010) Thermodynamic resolution: how do errors in modeled protein structures affect binding affinity predictions? Proteins Struct Funct Bioinf 78(7):1613–1617

    CAS  Google Scholar 

  28. Deshmukh SA et al (2013) Atomistic insights into solvation dynamics and conformational transformation in thermo-sensitive and non-thermo-sensitive oligomers. Polymer 54(1):210–222

    Article  CAS  Google Scholar 

  29. Pitera JW (2014) Expected distributions of root-mean-square positional deviations in proteins. J Phys Chem B 118(24):6526–6530

    Article  CAS  Google Scholar 

  30. Kalmankar NV, Ramakrishnan C, Balaram P (2014) Sparsely populated residue conformations in protein structures: revisiting “experimental” Ramachandran maps. Proteins Struct Funct Bioinf 82(7):1101–1112

    Article  CAS  Google Scholar 

  31. Noguchi N et al (2000) Regulation of transcription of the mph(A) gene for macrolide 2’-phosphotransferase I in Escherichia coli: characterization of the regulatory gene mphR(A). J Bacteriol 182(18):5052–5058

    Article  CAS  Google Scholar 

  32. Miller BR et al (2012) MMPBSA.py: an efficient program for end-state free energy calculations. J Chem Theory Comput 8(9):3314–3321

    Article  CAS  Google Scholar 

  33. Sun HM, Hunter CA, Llamas EM (2015) The flexibility-complementarity dichotomy in receptor-ligand interactions. Chem Sci 6(2):1444–1453

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The calculations of this paper were performed partly on the Supercomputing Center of University of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju-Guang Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, T., Zhang, Y., Ding, JN. et al. Insights into resistance mechanism of the macrolide biosensor protein MphR(A) binding to macrolide antibiotic erythromycin by molecular dynamics simulation. J Comput Aided Mol Des 29, 1123–1136 (2015). https://doi.org/10.1007/s10822-015-9881-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-015-9881-0

Keywords

Navigation