iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s10817-015-9320-x
Formally-Verified Decision Procedures for Univariate Polynomial Computation Based on Sturm’s and Tarski’s Theorems | Journal of Automated Reasoning Skip to main content
Log in

Formally-Verified Decision Procedures for Univariate Polynomial Computation Based on Sturm’s and Tarski’s Theorems

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

Sturm’s theorem is a well-known result in real algebraic geometry that provides a function that computes the number of roots of a univariate polynomial in a semi-open interval, not counting multiplicity. A generalization of Sturm’s theorem is known as Tarski’s theorem, which provides a linear relationship between functions known as Tarski queries and cardinalities of certain sets. The linear system that results from this relationship is in fact invertible and can be used to explicitly count the number of roots of a univariate polynomial on a set defined by a system of polynomial relations. This paper presents a formalization of these results in the PVS theorem prover, including formal proofs of Sturm’s and Tarski’s theorems. These theorems are at the basis of two decision procedures, which are implemented as computable functions in PVS. The first, based on Sturm’s theorem, determines satisfiability of a single polynomial relation over an interval. The second, based on Tarski’s theorem, determines the satisfiability of a system of polynomial relations over the real line. The soundness and completeness properties of these decision procedures are formally verified in PVS. The procedures and their correctness properties enable the implementation of PVS strategies for automatically proving existential and universal statements on polynomial systems. Since the decision procedures are formally verified in PVS, the soundness of the strategies depends solely on the internal logic of PVS rather than on an external oracle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Akbarpour, B., Paulson, L.C.: MetiTarski: An automatic theorem prover for real-valued special functions. J. Autom. Reason. 44(3), 175–205 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aransay, J., Divasón, J.: Formalization and execution of linear algebra: from theorems to algorithms. In: Gupta, G., Peña, R. (eds.) Proceedings, 23rd International Symposium on Logic-Based Program Synthesis and Transformation, LOPSTR 2013, Madrid, Spain. Dpto. de Systemas Informáticos y Computation, Universidad Complutense de Madrid, TR-11-13 (2013)

  3. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry (Algorithms and Computation in Mathematics). Springer-Verlag New York, Inc., USA (2006)

    Google Scholar 

  4. Cohen, C.: Mahboubi, A.: Formal proofs in real algebraic geometry: from ordered fields to quantifier elimination. Logical Methods Comput. Sci. 8(1:02), 1–40 (Feb 2012) https://hal.inria.fr/inria-00593738

  5. Collins, G.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Second GI Conference on Automata Theory and Formal Languages. Lecture Notes in Computer Science, vol. 33, pp. 134–183. Springer-Verlag, Kaiserslautern (1975)

    Google Scholar 

  6. Crespo, L.G., Muñoz, C.A., Narkawicz, A.J., Kenny, S.P., Giesy, D.P.: Uncertainty analysis via failure domain characterization: Polynomial requirement functions. In.: Proceedings of European Safety and Reliability Conference, p 2011. Troyes, France

  7. Daumas, M., Lester, D., Muñoz, C.: Verified real number calculations: A library for interval arithmetic. IEEE Trans. Comput. 58(2), 1–12 (2009)

    Article  Google Scholar 

  8. Dénès, M., Mörtberg, A., Siles, V.: A refinement-based approach to computational algebra in Coq. In: Beringer, L., Felty, A.P. (eds.) Interactive Theorem Proving - Third International Conference, ITP 2012, Princeton, NJ, USA, August 13-15, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7406, pp. 83–98. Springer (2012). doi:10.1007/978-3-642-32347-8

  9. Denman, W., Muñoz, C.: Automated real proving in PVS via MetiTarski. In: Jones, C., Pihlajasaari, P., Sun, J (eds.) Proceedings of the 19th International Symposium on Formal Methods (FM 2014). Lecture Notes in Computer Science, vol. 8442, pp. 194–199. Springer, Singapore (2014)

    Google Scholar 

  10. de Dinechin, F., Lauter, C., Melquiond, G.: Certifying the floating-point implementation of an elementary function using Gappa. IEEE Trans. Comput. 60(2), 242–253 (2011)

    Article  MathSciNet  Google Scholar 

  11. Dowek, G., Geser, A., Muñoz, C.: Tactical conflict detection and resolution in a 3-D airspace. In: Proceedings of the 4th USA/Europe Air Traffic Management R&D Seminar, ATM 2001. Santa Fe, New Mexico (2001), a long version appears as report NASA/CR-2001-210853 ICASE Report No. 2001-7

  12. Eberl, M.: A decision procedure for univariate real polynomials in Isabelle/HOL. In: Proceedings of the 2015 Conference on Certified Programs and Proofs, CPP ’15, pp. 75–83. ACM, New York (2015). doi:10.1145/2676724.2693166

  13. Eisermann, M.: The fundamental theorem of algebra made effective: An elementary real-algebraic proof via Sturm chains. Am. Math. Mon. 119(9), 715–752 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gao, S., Kong, S., Clarke, E.M. : dReal: An SMT solver for nonlinear theories over the reals. In: Bonacina, M.P. (ed.) Automated Deduction - CADE-24 - 24th International Conference on Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013. Proceedings. Lecture Notes in Computer Science, vol. 7898, pp. 208–214. Springer (2013). doi:10.1007/978-3-642-38574-2

  15. Garloff, J.: Application of Bernstein expansion to the solution of control problems. Reliab. Comput. 6, 303–320 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. von zur Gathen, J., Lücking, T.: Subresultants revisited. Theor. Comput. Sci. 297(1–3), 199–239 (2003). doi:10.1016/S0304-3975(02)00639-4

    Article  MATH  Google Scholar 

  17. Gonthier, G.: Point-free, set-free concrete linear algebra. In: van Eekelen, M.C.J.D., Geuvers, H., Schmaltz, J., Wiedijk, F (eds.) Interactive Theorem Proving - ITP 2011, vol. 6898, pp. 103–118. Radboud University of Nijmegen, Springer, Berg en Dal, Netherlands (2011). https://hal.inria.fr/hal-00805966

    Google Scholar 

  18. Granvilliers, L., Benhamou, F.: RealPaver: An interval solver using constraint satisfaction techniques. ACM Trans. Math. Softw. 32(1), 138–156 (2006)

    Article  MathSciNet  Google Scholar 

  19. Harrison, J.: Metatheory and reflection in theorem proving: A survey and critique. Technical Report CRC-053. SRI Cambridge, Millers Yard, Cambridge (1995)

    Google Scholar 

  20. Harrison, J.: Verifying the accuracy of polynomial approximations in HOL. In: Gunter, E.L., Felty, A. (eds.) Theorem Proving in Higher Order Logics: 10th International Conference, TPHOLs’97. Lecture Notes in Computer Science, vol. 1275, pp. 137–152. Springer-Verlag, Murray Hill, NJ (1997)

    Chapter  Google Scholar 

  21. Harrison, J.: Verifying nonlinear real formulas via sums of squares. In: Theorem Proving in Higher Order Logics. Lecture Notes in Computer Science, vol. 4732, pp. 102–118. Springer (2007)

  22. Herencia-Zapana, H., Jobredeaux, R., Owre, S., Garoche, P.L., Feron, E., Perez, G., Ascariz, P.: PVS linear algebra libraries for verification of control software algorithms in C/ACSL. In: Goodloe, A., Person, S. (eds.) NASA Formal Methods - 4th International Symposium, NFM 2012, Norfolk, VA, USA, April 3-5, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7226, pp. 147–161. Springer (2012). doi:10.1007/978-3-642-28891-3

  23. Kaltofen, E.L., Li, B., Yang, Z., Zhi, L.: Exact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficients. In: Robbiano, L., Abbott, J (eds.) Approximate Commutative Algebra. Springer Vienna, Texts and Monographs in Symbolic Computation (2010)

    Google Scholar 

  24. Kuchar, J., Yang, L.: A review of conflict detection and resolution modeling methods. IEEE Trans. Intell. Transp. Syst. 1(4), 179–189 (2000)

    Article  Google Scholar 

  25. Mahboubi, A.: Implementing the cylindrical algebraic decomposition within the Coq system. Math. Struct. Comput. Sci. 17(1), 99–127 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mahboubi, A., Pottier, L.: Elimination des quantificateurs sur les réels en Coq. In: Journées Francophone des Langages Applicatifs (JFLA) (2002)

  27. Mahmoud, M.Y., Aravantinos, V., Tahar, S.: Formalization of infinite dimension linear spaces with application to quantum theory. In: Brat, G., Rungta, N., Venet, A. (eds.) NASA Formal Methods, 5th International Symposium, NFM 2013, Moffett Field, CA, USA, May 14-16, 2013. Proceedings. Lecture Notes in Computer Science, vol. 7871, pp. 413–427. Springer (2013). doi:10.1007/978-3-642-38088-4

  28. McLaughlin, S., Harrison, J.: A proof-producing decision procedure for real arithmetic. In: Nieuwenhuis, R. (ed.) Proceedings of the 20th International Conference on Automated Deduction, proceedings. Lecture Notes in Computer Science, vol. 3632, pp. 295–314 (2005)

  29. Melquiond, G.: Proving bounds on real-valued functions with computations. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) Automated Reasoning, 4th International Joint Conference, IJCAR 2008, Sydney, Australia, August 12-15, 2008, Proceedings. Lecture Notes in Computer Science, vol. 5195, pp. 2–17. Springer (2008). 10.1007/978-3-540-71070-7_2

  30. Monniaux, D., Corbineau, P.: On the generation of Positivstellensatz witnesses in degenerate cases. In: Proceedings of Interactive Theorem Proving (ITP). Lecture Notes in Computer Science (2011)

  31. de Moura, L., Passmore, G.: Computation in real closed infinitesimal and transcendental extensions of the rationals. In: Automated Deduction - CADE-24, 24th International Conference on Automated Deduction, Lake Placid, New York, June 9-14, 2013, Proceedings (2013)

  32. Muñoz, C.: Rapid prototyping in PVS. Contractor Report NASA/CR-2003-212418, NASA, Langley Research Center, Hampton VA 23681-2199, USA (2003)

  33. Muñoz, C., Narkawicz, A.: Formalization of a representation of Bernstein polynomials and applications to global optimization. J. Autom. Reason. 51(2), 151–196 (2013). doi:10.1007/s10817-012-9256-3

    Article  Google Scholar 

  34. Narkawicz, A., Muñoz, C.: A formally verified generic branching algorithm for global optimization. In: Cohen, E., Rybalchenko, A. (eds.) Fifth Working Conference on Verified Software: Theories, Tools and Experiments (VSTTE 2013). Lecture Notes in Computer Science, vol. 8164, pp. 326–343. Springer (2014)

  35. Narkawicz, A.J., Muñoz, C.A.: A formally-verified decision procedure for univariate polynomial computation based on Sturm’s theorem. Technical Memorandum NASA/TM-2014-218548, NASA, Langley Research Center, Hampton VA 23681-2199, USA (2014)

  36. Owre, S., Rushby, J., Shankar, N.: PVS: A prototype verification system. In: Kapur, D. (ed.) Proceeding of the 11th International Conference on Automated Deduction (CADE). Lecture Notes in Artificial Intelligence, vol. 607, pp. 748–752. Springer (1992)

  37. Passmore, G.O., Jackson, P.B.: Combined decision techniques for the existential theory of the reals. In: Dixon, L. (ed.) Proceedings of Calculemus/Mathematical Knowledge Management. pp. 122–137. No. 5625 in LNAI. Springer-Verlag (2009)

  38. Shankar, N.: Efficiently executing PVS. Tech. rep., Project Report, ComputerScience Laboratory. SRI International, Menlo Park (1999)

    Google Scholar 

  39. Solovyev, A., Hales, T.C.: Formal verification of nonlinear inequalities with Taylor interval approximations. In: Brat, G., Rungta, N., Venet, A. (eds.) Proceedings of the 5th International Symposium NASA Formal Methods. Lecture Notes in Computer Science, vol. 7871, pp. 383–397 (2013)

  40. Sottile, F.: Chapter 2: Real solutions to univariate polynomials. course Notes. http://www.math.tamu.edu/sottile/teaching/10.S/Ch2.pdf

  41. Sturm, C.: Mémoire sur la résolution des équations numériques. In: Pont, J.C. (ed.) Collected Works of Charles François Sturm, pp. 345–390. Birkhäuser Basel (2009). doi:10.1007/978-3-7643-7990-2_29

  42. Tarski, A.: A decision method for elementary algebra and geometry. Bull. Am. Math. Soc., 59 (1951)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Muñoz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narkawicz, A., Muñoz, C. & Dutle, A. Formally-Verified Decision Procedures for Univariate Polynomial Computation Based on Sturm’s and Tarski’s Theorems. J Autom Reasoning 54, 285–326 (2015). https://doi.org/10.1007/s10817-015-9320-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-015-9320-x

Keywords

Navigation