iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s10766-015-0398-x
A Loosely Coordinated Model for Heap-Based Priority Queues in Multicore Environments | International Journal of Parallel Programming Skip to main content
Log in

A Loosely Coordinated Model for Heap-Based Priority Queues in Multicore Environments

  • Published:
International Journal of Parallel Programming Aims and scope Submit manuscript

Abstract

Heap-based priority queues are very common dynamical data structures used in several fields, ranging from operating systems to scientific applications. However, the rise of new multicore CPUs introduced new challenges in the process of design of these data structures: in addition to traditional requirements like correctness and progress, the scalability is of paramount importance. It is a common opinion that these two demands are partially in conflict each other, so that in these computational environments it is necessary to relax the requirements of correctness and linearizability to achieve high performances. In this paper we introduce a loosely coordinated approach for the management of heap based priority queues on multicore CPUs, with the aim to realize a tradeoff between efficiency and sequential correctness. The approach is based on a sharing of information among only a small number of cores, so that to improve performance without completely losing the features of the data structure. The results obtained on a scientific problem show significant benefits both in terms of parallel efficiency, as well as in term of numerical accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Afek, Y., Hakimi, M., Morrison, A.: Quasi-linearizability: relaxed consistency for improved concurrency. In: Proceedings 14th International Conference Principles of Distributed Systems, OPODIS 2010, Lecture Notes in Computer Science Volume 6490, pp. 395–410 (2010)

  2. Alistarh, D., Kopinsky, J., Li, J., Shavit, N.: The SprayList: A Scalable Relaxed Proprity Queue. Microsoft Tecnical Report MSR-TR-2014-16

  3. Arora, N., Blumofe, R., Plaxton, G.: Thread scheduling for multiprogrammed multiprocessors. Theory Comput. Syst. 34, 115–144 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ayani, R.: LR\_algorithm: concurrent operations on priority queues. In Proceedings on the 2nd IEEE Symposium on Parallel and Distributed Processing, pp. 22–25 (1991)

  5. Berntsen, J.: Practical error estimation in adaptive multidimensional quadrature routines. J. Comput. Appl. Math. 25, 327–340 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berntsen, J., Espelid, T., Genz, A.: Algorithm 698: DCUHRE—an adaptive multidimensional integration routine for a vector of integrals. ACM Trans. Math. Softw. 17, 452–456 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cools, R., Rabinowitz, P.: Monomial cubature rules since “Stroud”: a compilation. J. Comput. Appl. Math. 48, 309–326 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. D’Amore, L., Casaburi, D., Galletti, A., Marcellino, L., Murli, A.: Integration of emerging computer technologies for an efficient image sequences analysis. Integr. Comput. Aided Eng. 18, 365–378 (2011)

    Google Scholar 

  9. Dongarra, J., Gannon, D., Fox, G., Kennedy, K.: The impact of multicore on computational science software. CTWatch Q. 3, 1–10 (2007)

    Google Scholar 

  10. Dongarra, J., Foster, I., Fox, G., Gropp, W., Kennedy, K., Torczon, L., White, A.: Sourcebook of Parallel Computing. Morgan Kaufmann Publishers, Burlington (2003)

    Google Scholar 

  11. Flatt, H.P., Kennedy, K.: Performance of parallel processors. Parallel Comput. 12, 1–20 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Genz, A.: Testing multiple integration software. In: Ford, B., Rault, J.C., Thommaset, F. (eds.) Tools, Methods and Language for Scientic and Engineering Computation. North Holland, New York (1984)

    Google Scholar 

  13. Genz, A., Malik, A.: An embedded family of fully symmetric numerical integration rules. SIAM J. Numer. Anal. 20, 580–588 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Haas, A., Henzinger, T., Kirsch, C., Lippautz, M., Payer, H., Sezgin, A., Sokolova, A.: Distributed queues in shared memory. In: CF ’13 Proceedings of the ACM International Conference on Computing Frontiers, ACM New York. Article No. 17 (2013)

  15. Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free algorithm. J. Parallel Distrib. Comput. 70, 1–12 (2010)

    Article  MATH  Google Scholar 

  16. Henzinger, T., Kirsch, C., Payer, H., Sezgin, A., Sokolova, A.: Quantitative relaxation of concurrent data structure. In: POPL ’13 Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 317–328. ACM, New York (2013)

  17. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects. ACM Trans. Progr. Lang. Syst. 12, 463–492 (1990)

    Article  Google Scholar 

  18. Herlihy, M.: Wait-free synchronization. ACM Trans. Progr. Lang. Syst. 11, 124–149 (1991)

    Article  Google Scholar 

  19. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization: double ended queues as an example. In: Proceedings of 23th International Conference on Distributed Computing System (2003)

  20. Herlihy, M.P., Shavit, N.: The Art of Multiprocessor Programming. Rev. 1st edn. Morgan Kaufmann (2012)

  21. Kessels, J.: On the fly optimization of data structure. Commun. ACM 26, 895–901 (1983)

    Article  MATH  Google Scholar 

  22. Kogan, A., Petrank, E.: Wait-free queues with multiple enqueuers and dequeuers. In: PPoPP ’11 Proceedings of the 16th ACM Symposium on Principles and Practice of Parallel Programming, pp. 223–234. ACM, New York (2011)

  23. Krommer, A., Ueberhuber, C.: Computational Integration. SIAM, New Delhi (1998)

    Book  MATH  Google Scholar 

  24. Laccetti, G., Lapegna, M.: PAMIHR. A parallel FORTRAN program for multidimensional quadrature on distributed memory architectures. Lect. Notes Comput. Sci. 1685, 1144–1148 (1999)

    Article  Google Scholar 

  25. Laccetti, G., Lapegna, M., Mele, V., Romano, D., Murli, A.: A double adaptive algorithm for multidimensional integration on multicore based HPC systems. Int. J. Parallel Progr. 40, 397–409 (2012)

    Article  Google Scholar 

  26. Lapegna, M.: A global adaptive quadrature for the approximate computation of multidimensional integrals on a distributed memory multiprocessor. Concurr Pract. Exp. 4, 413–426 (1992)

    Article  Google Scholar 

  27. Michael, M., Scott, M.: Simple, fast, and practical non-blocking and blocking concurrent queue algorithms. In: Proceedings PODC ’96 Proceedings of the Fifteenth Annual ACM Symposium on Principles of Distributed Computing, pp. 267–275. ACM, New York (1996)

  28. Moir, M., Nussbaum, D., Shalev, O., Shavit, N.: Using elimination to implement scalable and lock-free FIFO queues. In: Proceeding SPAA ’05 Proceedings of the Seventeenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, pp. 253–262. ACM, NewYork (2005)

  29. Moir, M., Shavit, N.: Concurrent Data Structures. In: Metha, D., Sahni, S. (eds.) Handbook of Data Structures and Applications, 1st edn, pp. 47-1–47-30. CRC Press, Boca Raton (2005)

    Google Scholar 

  30. Murli, A., D’Amore, L., Laccetti, G., Gregoretti, F., Oliva, G.: A multi-grained distributed implementation of the parallel Block Conjugate Gradient algorithm. Concurr. Comput. Pract. Exp. 22, 2053–2072 (2010)

    Google Scholar 

  31. Nurmi, O., Soisalon-Soininen, E., Wood, D.: Concurrent control in database structures with relaxed balance. In: Proceedings. of the Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 170–176. ACM, New York (1987)

  32. Rao, V., Kumar, V.: Concurrent access of priority queues. IEEE Trans. Comput. 37, 1657–1665 (1988)

    Article  MATH  Google Scholar 

  33. Shavit, N.: Data structure in multicore age. Commun. ACM 54, 76–84 (2011)

    Article  Google Scholar 

  34. Shavit, N., Touitou, D.: Elimination tree and the construction of pools and stacks. Theory Comput. Syst. 30, 645–670 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sundell, H., Tsigas, P.: Fast and lock-free concurrent priority queues for multi-thread systems. J. Parallel Distrib. Comput. 65, 609–627 (2005)

    Article  MATH  Google Scholar 

  36. Wimmer, M., Versaci, F., Traff, J.L., Cedermann, D., Tsigas, P.: Data structure for task-based priority scheduling. In: PPoPP ’14 Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 379–380. ACM, New York (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Lapegna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laccetti, G., Lapegna, M. & Mele, V. A Loosely Coordinated Model for Heap-Based Priority Queues in Multicore Environments. Int J Parallel Prog 44, 901–921 (2016). https://doi.org/10.1007/s10766-015-0398-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10766-015-0398-x

Keywords

Navigation