iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s10653-022-01272-2
Heavy metal pollution index calculation in geochemistry assessment: a case study on Playa Las Petroleras | Environmental Geochemistry and Health Skip to main content
Log in

Heavy metal pollution index calculation in geochemistry assessment: a case study on Playa Las Petroleras

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

This work is aimed to assess potential risk associated with the presence of metals and metalloids in soil at “Playa Las Petroleras” sector, located in Antofagasta (Chile). The zone under study has been affected by four oil spill events. This sector is located in an urban area by the sea. So, it has a great social and environmental relevance. The concentrations of 15 elements in soil samples were assessed, four of them presenting potential ecological risk: As, Co, Cu, and Pb. Nine pollution indices were applied to data: four single pollution indices and five integrated pollution indices to assess soil pollution. The single pollution indices show that the site bears potential ecological and environmental risk due to the presence of Cu, the site being classified as highly contaminated owing to a severe enrichment of this metal. For Co, all the indices allow classifying the site as little or uncontaminated, while the level of As and Pb pollution could be considered as ranging from uncontaminated to moderately contaminated. The integrated pollution indices show that average concentrations are highly contaminated mainly owing to the presence of Cu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136, 227–238.

    Article  CAS  Google Scholar 

  • Ackermann, F. (1980). A procedure for correcting the grain size effect in heavy metal analyses of estuarine and coastal sediments. Environmental Technology, 1(11), 518–527.

    CAS  Google Scholar 

  • Albanese, S., De Vivo, B., Lima, A., Cicchella, D., Civitillo, D., & Cosenza, A. (2010). Geochemical baselines and risk assessment of the Bagnoli brownfield site coastal sea sediments (Naples, Italy). Journal of Geochemical Exploration, 105(1–2), 19–33.

    Article  CAS  Google Scholar 

  • Ander, E. L., Johnson, C. C., Cave, M. R., Palumbo-Roe, B., Nathanail, C. P., & Lark, R. M. (2013). Methodology for the determination of normal background concentrations of contaminants in English soil. Science of the Total Environment, 454, 604–618.

    Article  Google Scholar 

  • Asante-Duah, D. K. (2021). Hazardous waste risk assessment. CRC Press.

    Book  Google Scholar 

  • Biasioli, M., Grčman, H., Kralj, T., Madrid, F., Díaz-Barrientos, E., & Ajmone-Marsan, F. (2007). Potentially toxic elements contamination in urban soils: A comparison of three European cities. Journal of Environmental Quality, 36(1), 70–79.

    Article  CAS  Google Scholar 

  • BO-DS-N2400. Decreto Supremo N° 24335 del 19 Julio 1996, Reglamento Ambiental para el Sector Hidrocarburos, modificado por los DS N° 29595 del 11 junio 2008 y N° 2400 del 10 de junio de 2015.

  • BOE. 2005. Real Decreto 9/2005, de 14 de enero, por el que se Establece la Relación de Actividades Potencialmente Contaminantes del Suelo y los Criterios y Estándares para la Declaración de Suelos Contaminados, pp. 11. BOE nº 15 de 18 de enero de 2005, Madrid.

  • Boric, R., Díaz, F., & Maksaev, V. (1990). Geología y yacimientos metalíferos de la región de Antofogasta. SERNAGEOMIN. Santiago, Chile.

  • Bundschuh, J., Litter, M. I., Parvez, F., Román-Ross, G., Nicolli, H. B., Jean, J. S., Liu, C. W., López, D., Armienta, M. A., Guilherme, L. R. G., Gómez-Cuevas, A., Cornejo, L., Cumbal, L., & Toujaguez, R. (2012). One century of arsenic exposure in Latin America: A review of history and occurrence from 14 countries. Science of the Total Environment, 429, 2–35.

    Article  CAS  Google Scholar 

  • Caeiro, S., Costa, M. H., Ramos, T. B., Fernandes, F., Silveira, N., & Coimbra, A. (2005). Assessing heavy metal contamination in Sado Estuary sediment: An index analysis approach. Ecological Indicators, 5, 151–169.

    Article  CAS  Google Scholar 

  • Norma de Calidad Ambiental del Recurso Suelo y Criterios de Remediación para Suelos Contaminados. Libro VI Anexo 2. República del Ecuador. 2015. http://extwprlegs1.fao.org/docs/pdf/ecu155129.pdf

  • CENMA. 2014. Informe final Versión 5. Diagnóstico regional de suelos abandonados con potencial presencia de contaminantes. Contrato Nº 618775–3-LP13. [Spanish]

  • CETESB (São Paulo). DD 256/2016/E, de 22 de novembro de 2016. Diário Oficial Estado de São Paulo - Caderno Executivo I (Poder Executivo, Seção I), edição n°126 (219) do dia 24/11/2016 Páginas: 55 e 56. Available from https://cetesb.sp.gov.br/aguas-subterraneas/wp-content/uploads/sites/13/2013/11/tabela_vos_2016_site.pdfhttps://cetesb.sp.gov.br/aguas-subterraneas/wp-content/uploads/sites/13/2013/11/tabela_vos_2016_site.pdf

  • Chen, C.-W., Kao, C.-M., Chen, C.-F., & Dong, C.-D. (2007). Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor. Taiwan. Chemosphere, 66(8), 1431–1440.

    Article  CAS  Google Scholar 

  • Chen, M., Ma, L. Q., Hoogeweg, C. G., & Harris, W. G. (2001). Arsenic background concentrations in Florida, USA surface soils: Determination and interpretation. Environmental Forensics, 2(2), 117–126.

    Article  CAS  Google Scholar 

  • Cicchella, D., De Vivo, B., & Lima, A. (2005). Background and baseline concentration values of elements harmful to human health in the volcanic soils of the metropolitan and provincial areas of Napoli (Italy). Geochemistry: Exploration, Environment, Analysis, 5(1), 29–40.

    CAS  Google Scholar 

  • CME-Canadian Ministry of the Environment. 2009 Soil, ground water and sediment standards for use under Part XV.1 of the Environmental Protection Act; Canadian Ministry of the Environment.

  • Darko, G., Dodd, M., Nkansah, M. A., Ansah, E., & Aduse-Poku, Y. (2017). Distribution and bioaccessibility of metals in urban soils of Kumasi. Ghana. Environmental Monitoring and Assessment, 189(6), 260.

    Article  Google Scholar 

  • Downie, A., Munroe, P., Cowie, A., Van Zwieten, L., & Lau, D. M. (2012). Biochar as a geoengineering climate solution: Hazard identification and risk management. Critical Reviews in Environmental Science and Technology, 42(3), 225–250.

    Article  Google Scholar 

  • Environment protection authority of Australia. Classification and management of contaminated soil for disposal. Retrieved March 7 2016, from http://epa.tas.gov.au/regulation/document?docid=55

  • Environmental Protection Ministry of China. (2015). Standards of soil environmental quality of agricultural land. Environmental Protection Ministry of China

  • US EPA. (2010). ProUCL Version 4.00.05 Technical guide statistical software for environmental applications for data sets with and without nondetect observations (draft). Office of Research and Development, US Environmental Protection Agency

  • US EPA, 2021. Regional Screening Levels (RSLs)—Generic tables—tables as of resident soil. Retrived May 2021, from https://semspub.epa.gov/work/HQ/400754.pdf.

  • Escribano, J., Martínez, P., Domagala, J., Padel, M., Espinoza, M., Jorquera, R., & Calderón, M. (2013). Cartas Bahía Isla Blanca y Taltal. Escala 1:100.000. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica, 164–165. In: mapa escala 1:100.000.

  • Ferguson, C., Darmendrail, D., Freier, K., Jensen, B. K., Jensen, J., Kasamas, H., Urzelai, A., & Vegter, J. (Eds.). (1998). Risk assessment for contaminated sites in Europe: scientific basis (Vol. 1). LQM Nottingham.

    Google Scholar 

  • Gilbert, R. O. (1987). Statistical Methods for Environmental Pollution Monitoring. John Wiley & Sons Inc.

    Google Scholar 

  • Gonzáles-Macías, C., Schifter, I., Lluch-Cota, D. B., Méndez-Rodríguez, L., & Hernández-Vázquez, S. (2006). Distribution, enrichment and accumulation of heavy metals in coastal sediments of Salina Cruz Bay, Mexico. Environmental Monitoring and Assessment, 118, 211–230.

    Article  Google Scholar 

  • González, G., & Niemeyer, H. (2004). Cartas Antofagasta y Punta Tetas, región de Antofagasta, Escala 1:100.000. SERNAGEOMIN. 35 p. (Carta Geológica de Chile, Serie Geología Básica: n.89). Santiago, Chile.

  • Guillén, M. T., Delgado, J., Albanese, S., Nieto, J. M., Lima, A., & De Vivo, B. (2011). Environmental geochemical mapping of Huelva municipality soils (SW Spain) as a tool to determine background and baseline values. Journal of Geochemical Exploration, 109(1–3), 59–69.

    Article  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A Sedimentological Approach. Water Research, 14(8), 975–1001.

    Google Scholar 

  • IHOBE, S. (2002). Manual práctico para la investigación de la contaminación del suelo. Gobierno Vasco, España.

  • Jain, C. K., Singhal, D. C., & Sharma, M. K. (2005). Metal pollution assessment of sediment and water in the river Hindon. India. Environmental Monitoring and Assessment, 105(1), 193–207.

    Article  CAS  Google Scholar 

  • Jia, X., Hu, B., Marchant, B. P., Zhou, L., Shi, Z., & Zhu, Y. (2019). A methodological framework for identifying potential sources of soil heavy metal pollution based on machine learning: A case study in the Yangtze Delta, China. Environmental Pollution, 250, 601–609.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements of soils and plants (4th ed., pp. 28–534). CRC press, Taylor & Francis Group, Boca Raton

  • Lacatusu, R. (2000). Appraising levels of soil contamination and pollution with heavy metals. European Soil Bureau Research Report, 4, 393–402.

    Google Scholar 

  • Lam, E. J., Montofré, I. L., Álvarez, F. A., Gaete, N. F., Poblete, D. A., & Rojas, R. J. (2020). Methodology to Prioritize Chilean Tailings Selection, According to Their Potential Risks. International Journal of Environmental Research and Public Health, 17(11), 3948.

    Article  Google Scholar 

  • Lambert, T. W., & Lane, S. (2004). Lead, arsenic, and polycyclic aromatic hydrocarbons in soil and house dust in the communities surrounding the Sydney, Nova Scotia, tar ponds. Environmental Health Perspectives, 112(1), 35–41.

    Article  CAS  Google Scholar 

  • Lee, D.-Y., & Lee, C.-H. (2011). Regulatory standards of heavy metal pollutants in soil and groundwater in Taiwan. National Taiwan University.

    Google Scholar 

  • Loska, K., Cebula, J., Pelczar, J., Wiechula, D., & Kwapulinski, J. (1997). Use of enrichment, and contamination factors together with geoaccumulation indices to evaluate the content of Cd, Cu, and Ni in the Bybnik water reservoir in Poland. Water, Air and Soil Pollution, 93, 347–365.

    Article  CAS  Google Scholar 

  • Luo, L., Lin, S., Huang, H., & Zhang, S. (2012). Relationships between aging of PAHs and soil properties. Environmental Pollution, 170, 177–182.

    Article  CAS  Google Scholar 

  • Luo, X. S., Xue, Y., Wang, Y. L., Cang, L., Xu, B., & Ding, J. (2015). Source identification and apportionment of heavy metals in urban soil profiles. Chemosphere, 127, 152–157.

    Article  CAS  Google Scholar 

  • Ma, L., Yang, Z., Li, L., & Wang, L. (2016). Source identification and risk assessment of heavy metal contaminations in urban soils of Changsha, a mine-impacted city in Southern China. Environmental Science and Pollution Research, 23(17), 17058–17066.

    Article  CAS  Google Scholar 

  • Ma, Y., Egodawatta, P., McGree, J., Liu, A., & Goonetilleke, A. (2016). Human health risk assessment of heavy metals in urban stormwater. Science of the Total Environment, 557, 764–772.

    Article  Google Scholar 

  • MAE, Ministerio del Ambiente del Ecuador Recurso Suelo (2002). Libro VI Anexo 2, Norma de la Calidad Ambiental del Recurso Suelo y Criterios de Remediación para suelos contaminados, 31 pp. https://maeorellana.files.wordpress.com/2015/11/anexo-2-suelo.pdf

  • Merino, B., & Herrera, C. (2006). Contaminación de Hidrocarburos en Playa Las Petroleras, Antofagasta. Congreso Geológico Chileno, 11. Antofagasta, Chile, v2 647–650.

  • Norma Oficial Mexicana NOM-147-SEMARNAT/SSA1–2004. Secretaría de Medio Ambiente y Recursos Naturales. Diario Oficial de la Federación.

  • Mico, C., Recatalá, L., & Sánchez, J. (2008). Statistical approaches to establish background of potentially toxic elements. In: Soil Contamination Research Trends, 217–234.

  • MINAM. (2013). Ministerio del Ambiente: aprueban Estándares de Calidad Ambiental (ECA) para suelo. Perú: Decreto Supremo N° 002–2013- MINAM.

  • Missimer, T. M., Teaf, C. M., Beeson, W. T., Maliva, R. G., Woolschlager, J., & Covert, D. J. (2018). Natural background and anthropogenic arsenic enrichment in Florida soils, surface water, and groundwater: A review with a discussion on public health risk. International Journal of Environmental Research and Public Health, 15(10), 2278.

    Article  CAS  Google Scholar 

  • Mtunzi, F. M., Dikio, E. D., & Moja, S. J. (2015). Evaluation of heavy metal pollution on soil in Vaderbijlpark, South Africa. International Journal of Environmental Monitoring and Analysis, 3, 44–49.

    Article  Google Scholar 

  • Müller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118.

    Google Scholar 

  • Instituto Nacional de Estadística (INE) (2017). Resultados población comuna de Chillán Santiago: Instituto Nacional de Estadísticas-Chile.

  • Nemerow, N. L. (1985). Stream, Lake, Estuary, and Ocean Pollution. Van Nostrand Reinhold Publishing C.

    Google Scholar 

  • Niu, Y., Jiang, X., Wang, K., Xia, J., Jiao, W., Niu, Y., & Yu, H. (2020). Meta analysis of heavy metal pollution and sources in surface sediments of Lake Taihu China. Science of the Total Environment, 700, 134509.

    Article  CAS  Google Scholar 

  • Norma NEPC para uso residencial. Naidu, R., Oliver, D., McConnell, S. (2003). Heavy metals phytotoxicity in soils. In: A. Landey., M. Gilbey., y B. Kennedy. (Eds). Proceedings of the fifth national workshop on the assessment of the site contamination (pp. 235–241). Australia: National Environment Protection Council (NEPC)

  • Petrik, A., Thiombane, M., Albanese, S., Lima, A., & De Vivo, B. (2018). Source patterns of Zn, Pb, Cr and Ni potentially toxic elements (PTEs) through a compositional discrimination analysis: A case study on the Campanian topsoil data. Geoderma, 331, 87–99.

    Article  CAS  Google Scholar 

  • Prakruthi, T. R., & Raju, N. S. (2017). Ecological risk assessment for heavy metals in roadside soils of Mysuru, Karnataka. International Journal of Innovative Research in Science, Engineering and Technology, 6(9), 18271–18274.

    Google Scholar 

  • Recatalá, L., Sánchez, J., Arbelo, C. D., & Sacristán, D. (2010). Can be reference values of heavy metals useful as soil quality standards? Contributions from assays in representative Mediterranean agricultural soils. In Proceedings of the 19th World Congress of Soil Science: Soil solutions for a changing world, Brisbane, Australia, 1–6 August 2010. Symposium 3.5. 1 Heavy metal contaminated soils (pp. 23–26). International Union of Soil Sciences (IUSS), c/o Institut für Bodenforschung, Universität für Bodenkultur.

  • Reimann, C., & Garrett, R. G. (2005). Geochemical background—concept and reality. Science of the Total Environment, 350(1–3), 12–27.

    Article  CAS  Google Scholar 

  • Tepanosyan, G., Sahakyan, L., Belyaeva, O., Maghakyan, N., & Saghatelyan, A. (2017). Human health risk assessment and riskiest heavy metal origin identification in urban soils of Yerevan, Armenia. Chemosphere, 184, 1230–1240.

    Article  CAS  Google Scholar 

  • Thomilson, D. C., Wilson, D. J., Harris, C. R., & Jeffrey, D. W. (1980). Problem in heavy metals in estuaries and the formation of pollution index. Helgoländer Meeresuntersuchungen, 33(1–4), 566–575.

    Google Scholar 

  • Townsend, T., Tolaymat, T., Leo, K., & Jambeck, J. (2004). Heavy metals in recovered fines from construction and demolition debris recycling facilities in Florida. Science of the Total Environment, 332(1–3), 1–11.

    Article  CAS  Google Scholar 

  • US-EPA. (1996). Soil screening guidance: Technical background document. United States Environmental Protection Agency Office of Solid Waste and Emergency Response.

    Google Scholar 

  • Wang, M., Markert, B., Chen, W., Peng, C., & Ouyang, Z. (2012). Identification of heavy metal pollutants using multivariate analysis and effects of land uses on their accumulation in urban soils in Beijing China. EnvirOnmental Monitoring and Assessment, 184(10), 5889–5897.

    Article  CAS  Google Scholar 

  • Wei, B., & Yang, L. (2010). A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 94, 99–107.

    Article  CAS  Google Scholar 

  • WSP-Emgrisa. (November 2019). 1782–3-LR16—“Diagnóstico de riesgo ambiental, Región de Antofagasta” Componente b) Estudio de Riesgo Ambiental en suelos abandonados- Informe Final. Extracted from https://mma.gob.cl/wp-content/uploads/2019/12/Diagnostico-Riesgo-Ambiental-Region-Antofagasta-2.zip

  • Wu, S., Peng, S., Zhang, X., Wu, D., Luo, W., & Zhang, T. (2015). Levels and health risk assessments of heavy metals in urban soils in Dongguan, China. Journal of Geochemical Exploration, 148, 71–78.

    Article  CAS  Google Scholar 

  • Zhong, L., Liming, L., & Jiewen, Y. (2010). Assessment of heavy metals contamination of paddy soil in Xiangyin County, China. In Symposium 4.1.2 Management and protection of receiving environments, 19th World Congress of Soil Science, Soil Solutions for a Changing World 191 e 6 August 2010, Brisbane, Australia, 17e20.

  • Zhu, D., Wei, Y., Zhao, Y., Wang, Q., & Han, J. (2018). Heavy metal pollution and ecological risk assessment of the agriculture soil in Xunyang mining area, Shaanxi Province, Northwestern China. Bulletin of Environmental Contamination and Toxicology, 101(2), 178–184.

    Article  CAS  Google Scholar 

  • Zhu, H. N., Yuan, X. Z., Zeng, G. M., Jiang, M., Liang, J., Zhang, C., Yin, J., Huang, H. J., Liu, Z. F., & Jiang, H. W. (2012). Ecological risk assessment of heavy metals in sediments of Xiawan Port based on modified potential ecological risk index. Transactions of Nonferrous Metals Society of China, 22, 1470–1477.

    Article  CAS  Google Scholar 

  • Zoller, W. H., Gladney, E. S., & Duce, R. A. (1974). Atmospheric concentrations and sources of trace metals at the South Pole. Science, 183(4121), 198–200.

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

EJL was involved in conception/research design/data acquisition/data analysis and interpretation/manuscript draft. JU was involved in conception/ research design/data acquisition/data analysis and interpretation/manuscript draft. JB was involved in data analysis and interpretation/manuscript draft. CH was involved in conception/research design/acquisition of data/drafting the manuscript. ÍLM was involved in conception/research design/data acquisition/manuscript draft. VZ was involved in conception/ research design/data acquisition/manuscript draft. Fernando ÁÁ was involved in data analysis and interpretation/manuscript draft. MC was involved in data analysis and interpretation/manuscript draft. All the authors approved the final version to be submitted.

Corresponding author

Correspondence to Elizabeth J. Lam.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest relevant to the content of this article.

Animal research

Since this study did not involve animal research, no consents were required to participate and publish data on animals. Therefore, the inclusion of these forms and other ethical issues related to the publication of this type of data do not apply to this study.

Consent to participate

Yes.

Consent to publish

All authors agreed on publishing the manuscript, respecting the current sequence of authors listed. Likewise, all authors agreed on designating Elizabeth J. Lam as the corresponding author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lam, E.J., Urrutia, J., Bech, J. et al. Heavy metal pollution index calculation in geochemistry assessment: a case study on Playa Las Petroleras. Environ Geochem Health 45, 409–426 (2023). https://doi.org/10.1007/s10653-022-01272-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01272-2

Keywords

Navigation