Abstract
Authentication and secrecy codes which provide both secrecy and authentication have been intensively studied in the case where there is no splitting; however the results concerning the case where there is splitting are far fewer. In this paper, we focus on the case with c-splitting, and obtain a bound on the number of encoding rules required in order to obtain maximum levels of security. A c-splitting authentication and secrecy code is called optimal if it obtains maximum levels of security and has the minimum number of encoding rules. We define a new design, called an authentication perpendicular multi-array, and prove that the existence of authentication perpendicular multi-arrays implies the existence of optimal c-splitting authentication and secrecy codes. Further, we study the constructions and existence of authentication perpendicular multi-arrays, and then obtain two new infinite classes of optimal c-splitting authentication and secrecy codes.
Similar content being viewed by others
References
Blundo C., De Santis A., Kurosawa K., Ogata W.: On a fallacious bound for authentication codes. J. Cryptol. 12(3), 155–159 (1999).
Casse L.R.A., Martin K.M., Wild P.R.: Bounds and characterizations of authentication/secrecy schemes. Des. Codes Cryptogr. 13(2), 107–129 (1998).
Chang Y., Ji L.: Optimal \((4up, 5, 1)\) optical orthogonal codes. J. Combin. Des. 12(5), 346–361 (2004).
Chee Y.M., Zhang X., Zhang H.: Infinite families of optimal authentication codes secure against spoofing attacks of highter order. Adv. Math. Commun. 5(1), 59–68 (2011).
Colbourn C.J., Hoffman D.G., Rees R.: A new class of group divisible designs with block size three. J. Combin. Theory Ser A. 59(1), 73–89 (1992).
De Soete M.: New bounds and constructions for authentication/secrecy codes with splitting. J. Cryptol. 3(3), 173–186 (1991).
Ding C., Salomaa A., Solé P., Tian X.: Three constructions of authenticaton/secrecy codes. Journal of Pure and Applied Algebra. 196(2–3), 149–168 (2005).
Du B.: Splitting balanced incomplete block designs with block size \(3\times 2\). J. Combin. Des. 12(6), 404–420 (2004).
Du B.: Splitting balanced incomplete block designs. Australas. J. Combin. 31, 287–298 (2005).
Ge G., Zhu L.: Authentication perpendicular arrays \(APA_{1}(2,5, v)\). J. Combin. Des. 4(5), 365–375 (1996).
Ge G., Zhu L.: Authentication perpendicular arrays \(APA_{1}(2,7, v)\). J. Combin. Des. 5(2), 111–124 (1997).
Ge G., Miao Y., Wang L.: Combinatorial constructions for optimal splitting authentication codes. SIAM J. Discret. Math. 18(4), 663–678 (2005).
Huber M.: Information theoretic authentication and secrecy codes in the splitting model. arXiv:1112.0038.
Huber M.: Combinatorial bounds and characterizations of splitting authentication codes. Cryptogr. Commun. 2(2), 173–185 (2010).
Liang M., Du B.: A new class of splitting \(3\)-designs. Des. Codes Cryptogr. 60(3), 283–290 (2011).
Liang M., Ji L., Zhang J.: Some new classes of \(2\)-fold optimal or perfect splitting authentication codes. Cryptogr. Commun. 9(3), 407–430 (2017).
Lidl R., Niederreiter H.: Finite Fields, pp. 225–226. Cambridge University Press, Cambridge (1997).
Massey J.L.: Cryptographya selective survey. In: Biglier E., Prati G. (eds.) Digital Communications, pp. 3–21. North-Holland, Amsterdam, New York, Oxford (1986).
Ogata W., Kurosawa K., Stinson D.R., Saido H.: New combinatorial designs and their applications to authentication codes and secret sharing schemes. Discret. Math. 279(1–3), 383–405 (2004).
Simmons G.J.: A game theory model of digital message authentication. Congr. Numer. 34, 413–424 (1982).
Simmons G.J.: Message authentication: a game on hypergraphs. Congr. Numer. 45, 161–192 (1984).
Simmons G.J.: Authentication theorey/coding theory. In: Blakley G.R., Chaum D. (eds.) Advances in Cryptology-CRYPTO 1984, vol. 196, pp. 411–431. Lecture Notes in Computer ScienceSpringer, Berlin, Heidelberg, New York (1985).
Simmons G.J.: A survey of information authentication. In: Simmons G.J. (ed.) Contemporary Cryptology: The Science of Information Integrity, pp. 379–419. IEEE Press, Piscataway (1992).
Stinson D.R.: Some constructions and bounds for authentication codes. J. Cryptol. 1(1), 37–51 (1988).
Stinson D.R.: A construction for authentication/secrecy codes from certain combinatorial designs. J. Cryptol. 1(2), 119–127 (1988).
Stinson D.R.: The combinatorics of authentication and secrecy codes. J. Cryptol. 2(1), 23–49 (1990).
Stinson D.R., Teirlink L.: A construction for authentication/secrecy codes from \(3\)-homogeneous permutation groups. Eur. J. Combin. 11(1), 73–79 (1990).
Tran V.T.: On the construction of authentication and secrecy codes. Des. Codes Cryptogr. 5(3), 269–280 (1995).
Wang J.: A new class of optimal 3-splitting authentication codes. Des. Codes Cryptogr. 38(3), 373–381 (2006).
Wang J., Su R.: Further results on the existence of splitting BIBDs and application to authentication codes. Acta Appl. Math. 109(3), 791–803 (2010).
Acknowledgements
The research of Mingchao Li was supported by the National Natural Science Foundation of China under Grant No. 11501161 and the Natural Science Foundation of Hebei Province under Grant No. A2016402164. The research of Miao Liang was supported by the National Natural Science Foundation of China under Grant Nos. 11301370 and 11571251, the China Postdoctoral Science Foundation under Grant No. 2016M601873, and sponsored by Qing Lan Project. The research of Beiliang Du was supported by the National Natural Science Foundation of China under Grant No. 11571251.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by C. Blundo.
Rights and permissions
About this article
Cite this article
Li, M., Liang, M., Du, B. et al. A construction for optimal c-splitting authentication and secrecy codes. Des. Codes Cryptogr. 86, 1739–1755 (2018). https://doi.org/10.1007/s10623-017-0421-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-017-0421-x
Keywords
- Splitting authentication codes
- Authentication and secrecy codes
- Group divisible splitting t-designs
- Splitting t-designs