Abstract
The main theorem of this article gives a classification of the codewords in \({C^{\bot}_{n-1}(n,q)}\) , the dual code of points and hyperplanes in PG(n, q), q even, with weight smaller than \({q+\sqrt[3]{q^{2}}+1}\). In the proof, we rely on the classification of the small blocking sets in PG(2, q), q even.
Similar content being viewed by others
References
Beutelspacher A.: Blocking sets and partial spreads in finite projective spaces. Geom. Dedicata 9(4), 425–449 (1980)
Bose R.C., Burton R.C.: A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the MacDonald codes. J. Combin. Theory 1, 96–104 (1966)
Bruen A.: Baer subplanes and blocking sets. Bull. Am. Math. Soc. 76, 342–344 (1970)
Calkin N.J., Key J.D., de Resmini M.J.: Minimum weight and dimension formulas for some geometric codes. Des. Codes Cryptogr. 17, 105–120 (1999)
Donati G., Durante N.: On the intersection of two subgeometries of PG(n, q). Des. Codes Cryptogr. 46(3), 261–267 (2008)
Gács A., Weiner Zs.: On On (q + t)-arcs of type (0, 2, t) . Des. Codes Cryptogr. 29(1–3), 131–139 (2003)
Hamada N.: The rank of the incidence matrix of points and d-flats in finite geometries. J. Sci. Hiroshima Univ. A I 32, 381–396 (1969)
Jagos I., Kiss G., Por A.: On the intersection of Baer subgeometries of PG(n, q 2). Acta. Sci. Math. (Szeged) 69, 419–429 (2003)
Korchmáros G., Mazzocca F.: On (q + t)-arcs of type (0, 2, t) in a Desarguesian plane of order q. Math. Proc. Camb. Phil. Soc. 108(3), 445–459 (1990)
Lavrauw M., Storme L., Vande Voorde G.: On the code generated by the incidence matrix of points and k-spaces in PG(n, q) and its dual. Finite Fields Appl. 14, 1020–1038 (2008)
Lavrauw M., Storme L., Van de Voorde G.: Linear codes from projective spaces. In: Bruen A.A., Wehlau D.L. (eds) Error-Correcting Codes, Finite Geometries, and Cryptography, AMS Contemporary Mathematics (CONM) book series, vol. 523, pp. 185–202. AMS, Providence (2010).
Storme L., Weiner Zs.: On 1-blocking sets in PG(n, q), n ≥ 3. Des. Codes Cryptogr. 21, 235–251 (2000)
Sziklai P.: On small blocking sets and their linearity. J. Combin. Theory A 115, 1167–1182 (2008)
Szőnyi T.: Blocking sets in Desarguesian affine and projective planes. Finite Fields Appl. 3, 187–202 (1997)
Szőnyi T., Weiner Zs.: Small blocking sets in higher dimensions. J. Combin. Theory A 95(1), 88–101 (2001)
Vandendriessche P.: Codes of Desarguesian projective planes of even order, projective triads and (q + t, t)-arcs of type (0, 2, t). Finite Fields Appl. doi:10.1016/j.ffa.2011.03.003 (2011).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by J. D. Key.
Rights and permissions
About this article
Cite this article
De Boeck, M. Small weight codewords in the dual code of points and hyperplanes in PG(n, q), q even. Des. Codes Cryptogr. 63, 171–182 (2012). https://doi.org/10.1007/s10623-011-9543-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-011-9543-8