iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s10623-011-9543-8
Small weight codewords in the dual code of points and hyperplanes in PG(n, q), q even | Designs, Codes and Cryptography Skip to main content
Log in

Small weight codewords in the dual code of points and hyperplanes in PG(n, q), q even

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The main theorem of this article gives a classification of the codewords in \({C^{\bot}_{n-1}(n,q)}\) , the dual code of points and hyperplanes in PG(n, q), q even, with weight smaller than \({q+\sqrt[3]{q^{2}}+1}\). In the proof, we rely on the classification of the small blocking sets in PG(2, q), q even.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beutelspacher A.: Blocking sets and partial spreads in finite projective spaces. Geom. Dedicata 9(4), 425–449 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bose R.C., Burton R.C.: A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the MacDonald codes. J. Combin. Theory 1, 96–104 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bruen A.: Baer subplanes and blocking sets. Bull. Am. Math. Soc. 76, 342–344 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  4. Calkin N.J., Key J.D., de Resmini M.J.: Minimum weight and dimension formulas for some geometric codes. Des. Codes Cryptogr. 17, 105–120 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Donati G., Durante N.: On the intersection of two subgeometries of PG(n, q). Des. Codes Cryptogr. 46(3), 261–267 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gács A., Weiner Zs.: On On (q + t)-arcs of type (0, 2, t) . Des. Codes Cryptogr. 29(1–3), 131–139 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hamada N.: The rank of the incidence matrix of points and d-flats in finite geometries. J. Sci. Hiroshima Univ. A I 32, 381–396 (1969)

    MATH  MathSciNet  Google Scholar 

  8. Jagos I., Kiss G., Por A.: On the intersection of Baer subgeometries of PG(n, q 2). Acta. Sci. Math. (Szeged) 69, 419–429 (2003)

    MATH  MathSciNet  Google Scholar 

  9. Korchmáros G., Mazzocca F.: On (q + t)-arcs of type (0, 2, t) in a Desarguesian plane of order q. Math. Proc. Camb. Phil. Soc. 108(3), 445–459 (1990)

    Article  MATH  Google Scholar 

  10. Lavrauw M., Storme L., Vande Voorde G.: On the code generated by the incidence matrix of points and k-spaces in PG(n, q) and its dual. Finite Fields Appl. 14, 1020–1038 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lavrauw M., Storme L., Van de Voorde G.: Linear codes from projective spaces. In: Bruen A.A., Wehlau D.L. (eds) Error-Correcting Codes, Finite Geometries, and Cryptography, AMS Contemporary Mathematics (CONM) book series, vol. 523, pp. 185–202. AMS, Providence (2010).

  12. Storme L., Weiner Zs.: On 1-blocking sets in PG(n, q), n ≥ 3. Des. Codes Cryptogr. 21, 235–251 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sziklai P.: On small blocking sets and their linearity. J. Combin. Theory A 115, 1167–1182 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Szőnyi T.: Blocking sets in Desarguesian affine and projective planes. Finite Fields Appl. 3, 187–202 (1997)

    Article  MathSciNet  Google Scholar 

  15. Szőnyi T., Weiner Zs.: Small blocking sets in higher dimensions. J. Combin. Theory A 95(1), 88–101 (2001)

    Article  Google Scholar 

  16. Vandendriessche P.: Codes of Desarguesian projective planes of even order, projective triads and (q + t, t)-arcs of type (0, 2, t). Finite Fields Appl. doi:10.1016/j.ffa.2011.03.003 (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. De Boeck.

Additional information

Communicated by J. D. Key.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Boeck, M. Small weight codewords in the dual code of points and hyperplanes in PG(n, q), q even. Des. Codes Cryptogr. 63, 171–182 (2012). https://doi.org/10.1007/s10623-011-9543-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-011-9543-8

Keywords

Mathematics Subject Classification (2000)

Navigation