iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s10617-014-9137-6
The fast evolving landscape of on-chip communication | Design Automation for Embedded Systems Skip to main content
Log in

The fast evolving landscape of on-chip communication

Selected future challenges and research avenues

  • Published:
Design Automation for Embedded Systems Aims and scope Submit manuscript

Abstract

As multi-core systems transition to the many-core realm, the pressure on the interconnection network is substantially elevated. The Network-on-Chip (NoC) is expected to undertake the expanding demands of the ever-increasing numbers of processing elements, while—at the same time—technological and application constraints increase the pressure for increased performance and efficiency with limited resources. Although NoC research has evolved significantly the last decade, essential questions remain un-answered and call for fresh research ideas and innovative solutions. In this paper, we summarize a selected set of NoC-related research challenges, with the hope to guide future development and trigger high-impact research progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Handy J (2011) NoC interconnect improves SoC economics. Objective analysis—semiconductor market research

  2. Browne J (2012) On-Chip Communications Network. in Sonics

  3. Dally WJ, Towles B (2001) Route packets, not wires: on-chip interconnection networks. In: Proceedings of the 38th design automation conference (DAC)

  4. Wentzlaff D et al (2007) On-chip interconnection architecture of the tile processor. IEEE Micro, pp 15–31

  5. Benini L, De Micheli G (2002) Networks on chips: a new SoC paradigm. IEEE Comput 35(1):7078

    Article  Google Scholar 

  6. De Micheli G, Seiculescu C, Murali S, Benini L and Angiolini F et al (2010) Networks on chips: from research to products. In: 47th design automation conference (DAC 2010)

  7. Kim J, Balfour J, Dally WJ (2007) Flattened butterfly topology for on-chip networks. In: Proceedings of IEEE/ACM international symposium on microarchitecture (MICRO)

  8. Mishra AK, Vijaykrishnan N, Das CR (2011) A case for heterogeneous on-chip interconnects for cmps. In: Proceedings of the international symposium on computer, architecture, pp 389–400

  9. Flich J, Mejia A, Lopez P, Duato J (2007) Region-based routing: An efcient routing mechanism to tackle unreliable hardware in networks on chip. In: International symposium on networks on chip (NOCS)

  10. Ma S, Enright Jerger N, Wang Z (2012) Whole packet forwarding: efficient design of fully adaptive routing algorithms for networks-on-chip. In: Proceedigs of the international symposium on high performance computer, architecture, pp 467–478

  11. Seo D, Ali A, Lim W-T, Rafique N, Thottethodi M (2005) Near-optimal worst-case throughput routing for two-dimensional mesh networks. In: Proceedings of the 32nd annual international symposium on computer architecture (ISCA ’05). IEEE Computer Society, Washington, DC, pp 432–443

  12. Balfour J, Dally WJ (2006) Design tradeoffs for tiled CMP on-chip networks. In: Proceedings of the 20th ACM international conference on supercomputing (ICS)

  13. Passas G, Katevenis M, Pnevmatikatos D (2012) Crossbar NoCs are scalable beyond 100 nodes. IEEE transactions on computer-aided design of integrated circuits and systems (TCAD). 31(4):573–585. ISSN: 0278–0070

  14. Azimi M, Dai D, Mejia A, Park D, Saharoy R, Vaidya AS (2009) Flexible and adaptive on-chip interconnect for tera-scale architectures. Intel Technol J 13(4):6277

    Google Scholar 

  15. Kim J (2009) Low-cost router microarchitecture for on-chip networks. In: International symposiun on microarchitecture

  16. Salihundam P et al (2010) A 2Tb/s 6x4 mesh network with DVFS and 2.3Tb/s/W router in 45nm CMOS. In: Sympsosium VLSI circuits

  17. Vangal SR et al (Jan. 2008) An 80-tile sub-100-W teraFLOPS processor in 65-nm CMOS. IEEE J Solid-State Circuits 43:6–20

  18. Peh L-S, Dally WJ (2001) A delay model and speculative architecture for pipelined routers. In: Proceedigs of the 7th international symposium on high-performance computer, architecture (HPCA-7)

  19. Mullins RD, West AF, Moore SW (2004) Low-latency virtual-channel routers for on-chip networks. In: Procedings of the international symposium on computer, architecture, pp 188–197

  20. Tran AT, Baas BM (2011) RoShaQ: high-performance on-chip router with shared queues. In: IEEE ICCD, pp 232–238

  21. Becker DU (2012) Adaptive backpressure: efficient buffer management for on-chip networks. In: IEEE ICCD

  22. Hassan SM and Yalamanchili S (2013) Centralized buffer router: a low latency, low power router for high radix nocs. In: IEEE/ACM international symposium on network on chip

  23. Seitanidis I, Psarras A, Dimitrakopoulos G, Nicopoulos C (2014) Elastistore: an elastic buffer architecture for network-on-chip routers. In: Proceedings of design automation and test in Europe (DATE)

  24. Michelogiannakis G, Jiang N, Becker D, Dally W.J (2011) Packet chaining: efficient single-cycle allocation for on-chip networks. In: Proceedings IEEE/ACM international symposium on microarchitecture (MICRO), pp 83–94

  25. Dimitrakopoulos G et al (2013) Merged switch allocation and traversal in network-on-chip switches. In: IEEE transation on computers

  26. Roca A, Hernandez C, Flich J, Silla F, Duato J (2013) Silicon-aware distributed switch architecture for on-chip networks. J Syst Archit 59(7):505–515

    Article  Google Scholar 

  27. Balkan A, Qu G, Vishkin U (Oct 2009) Mesh-of-trees and alternative interconnection networks for single-chip parallelism. IEEE Trans VLSI Syst 17(10):1419–1432

  28. Saponara S, Bacchillone T, Petri E, Fanucci L, Locatelli R, Coppola M Design of a NoC interface macrocell with hardware support of advanced networking functionalities. In: IEEE transactions on computers

  29. Yang X, Qing-li Z, Fang-fa F, Ming-yan Y, Cheng L (2007) NISAR: an AXI compliant on-chip NI architecture offering transaction reordering processing. In: Proceedings of the 7th international conference ASIC ASICON 07, p 890893

  30. Radulescu A, Dielissen J, Pestana SG, Gangwal OP, Rijpkema E, Wielage P, Goossens K (2005) An efficient on-chip NI offering guaranteed services, shared-memory abstraction, and flexible network configuration. IEEE Trans Comput Aided Design Integr Circuits Syst 24(1):417

  31. Ebrahimi M, Daneshtalab M, Liljeberg P, Plosila J, Tenhunen H (2010) A high-performance network interface architecture for NoCs using reorder buffer sharing. In: Proceedings of the 18th Euromicro international parallel, distributed and network-based processing (PDP) conference, p 546550

  32. Kavadias S, Katevenis M, Pnevmatikatos D (2011) Network interface design for explicit communication in chip multiprocessors, chapter 10. In: Flich J, Bertozzi D (eds) designing network-on-chip architectures in the nanoscale era. CRC Press–Taylor & Francis Groupa, pp 325–351. ISBN: 978-1-4398-3710-8

  33. Fingeroff M (2010) High-level synthesis blue book. Xlibris Corp

  34. Coussy P, Morawiec A (2008) High-level synthesis: from algorithm to digital circuit. Springer

  35. Shacham O, Azizi O, Wachs M, Richardson S, Horowitz M (2010) Rethinking digital design: why design must change. IEEE Micro 30(6): 9–24

  36. Kim G, Lee MM, Kim J, Lee JW, Abts D, Marty M (2014) Low-overhead network-on-chip support for location-oblivious task placement. IEEE Trans Comput 99:1 PrePrints

    MathSciNet  Google Scholar 

  37. Itoh K (2009) Adaptive circuits for the 0.5-V nanoscale CMOS Era. In: ISSCC

  38. International Technology Roadmap for Semiconductors 2011. System Drivers, Figure SYSD3

  39. Howard J et al (2010) A 48-core IA-32 message-passing processor with DVFS in 45nm CMOS. In: ISSCC, pp 108–109

  40. Kim W, Gupta MS, Wei GY, Brooks D (2008) System level analysis of fast, per-core DVFS using on-chip switching regulators. In: International symposiun on high-performance computer, architecture

  41. Isci C, Buyuktosunoglu A, Cher C, Bose P and Martonosi M (2006) An analysis of efficient multi-core global power management policies: maximizing performance for a given power budget. In: International symposium on microarchitecture, pp 347–358

  42. Jain R, Geuskens B, Kim S, Khellah M, Kulkarni J, Tschanz J, De V (2014) A 0.45-1V fully-integrated distributed switched capacitor DC-DC converter with high density MIM capacitor in 22 nm tri-gate CMOS. IEEE J Solid-State Circuit PP(99):1–11

    Google Scholar 

  43. Robert Hilbrich J, van Kampenhout R (2011) Partitioning and task transfer on noC-based many-core processors in the avionics domain. Softwaretechnik-Trends 31(3)

  44. Trivio Francisco, Snchez Jos L, Alfaro Francisco J, Flich Jos (2012) Network-on-chip virtualization in chip-multiprocessor systems. J Syst Archit Embed Syst Design 58(3–4):126–139

    Article  Google Scholar 

  45. Sem-Jacobsen FO, Rodrigo Mocholi S, Strano A, Skeie T, Bertozzi D and Gilabert F (2013) Enabling Power Efficiency through Dynamic Rerouting On-Chip. ACM Trans Embed Comput Syst (TECS) 12(4):1–111:23

  46. Strano A, Ludovici D, Pavlidis V, Angiolini F, Krstic M, Bertozzi D (2011) Synchronization Challenge, chapter 6. In: Flich J, Bertozzi D (eds) Designing network on-chip architectures in the nanoscale era. Chapman and Hall/CRC Press, London Taylor and Francis [distributor]

    Google Scholar 

  47. Loi I, Angiolini F, Benini L (2008) Developing mesochronous synchronizers to enable 3D NoCs. In: Proceedings of the design, automation and test in Europe conference, pp 1414–1419

  48. Saponara S, Cecchini T, Sechi F, Fanucci L (2009) Pin-limited frequency converter IP bridge for efficient communication of automotive IC sensors with off-chip ECUs. In: IEEE international workshop on intelligent data acquisition and advanced computing systems: technology and applications, pp 167–171

  49. Tatenguem HF et al (2011) Contrasting multi-synchronous MPSoC design styles for fine-grained clock domain partitioning: the full-HD video playback case study. In: Proceedings of the 4th international workshop on network on chip architectures, pp 37–42

  50. Krstic M et al (2012) Evaluation of GALS methods in scaled CMOS technology: moonrake chip experience. IJERTCS 3(4):1–18

    MathSciNet  Google Scholar 

  51. Ludovici D, Strano A, Bertozzi D, (2009) Architecture design principles for the integration of synchronization interfaces into network-on-chip switches. In: 2nd international workshop on network on chip architectures, pp 31–36

  52. Vangal S et al (2007) An 80-tile 1.28TFLOPS network-on-chip in 65nm CMOS. In: ISSCC, pp 98–589

  53. Vivek De et al (2014) A 340mV-to-0.9V 20.2Tb/s source-synchronous hybrid packet/circuit-switched 1616 network-on-chip in 22nm Tri—Gate CMOS. In: ISSCC

  54. Nowick SM, Singh M (2011) High-performance asynchronous pipelines: an overview. IEEE Design Test Comput 28(5):8–22

    Article  Google Scholar 

  55. Yakovlev A, Vivet P, Renaudin M (2013) Advances in asynchronous logic: from principles to GALS & NoC, recent industry applications, and commercial CAD tools. In: Design, automation & test in Europe conference & exhibition (DATE), pp 1715–1724

  56. Moreira MT, Magalhaes FG, Gibiluka M, Hessel FP, Calazans NLV (2013) BaBaNoC: an asynchronous network-on-chip described in Balsa. In: International symposium on rapid system prototyping (RSP), pp 37–43

  57. Lee W, Vij VS, Thatcher AR, Stevens KS Design of low energy, high performance synchronous and asynchronous 64-point FFT. In: DATE ’13 proceedings of the conference on design, automation and test in, Europe, pp 242–247

  58. Plana LA et al (2011) SpiNNaker: design and implementation of a GALS multicore system-on-chip. ACM JETC 7(4):17:1–17:18

    MathSciNet  Google Scholar 

  59. Thonnart Y, Vivet P, Clermidy F (2010) A fully-asynchronous low-power framework for GALS NoC integration. In: DATE, pp 33–38

  60. Beerel PA, Dimou GD, Lines AM (2011) Proteus: an ASIC flow for GHz asynchronous designs. IEEE Design Test Comput 28(1):36–51

    Article  Google Scholar 

  61. Thonnart Y, Beigne E, Vivet P (2012) A pseudo-synchronous implementation flow for WCHB QDI asynchronous circuits. In: 18th IEEE international symposium on asynchronous circuits and systems (ASYNC), pp 73–80

  62. Gebhardt D, You J, Stevens KS (2011) Design of an energy-efficient asynchronous NoC and its optimization tools for heterogeneous SoCs. IEEE Trans Comput Aided Design Integr Circuits Syst 30(9):1387–1399

  63. Imai M, Yoneda T, (2011) Improving dependability and performance of fully asynchronous on-chip networks. In: 17th IEEE international symposium on asynchronous circuits and systems (ASYNC), pp 65–76

  64. Ghiribaldi A, Bertozzi D, Nowick SM (2013) A transition-signaling bundled data NoC switch architecture for cost-effective GALS multicore systems. In: Design, automation & test in Europe conference & exhibition (DATE), pp 332–337

  65. Clermidy F et al (2010) MAGALI: a network-on-chip based multi-core system-on-chip for MIMO 4G SDR. In: IEEE international conference on IC design and technology (ICICDT), pp 74–77

  66. Beigne E et al (2009) An asynchronous power aware and adaptive NoC based circuit. IEEE J Solid-State Circuits 44(4):1167–1177

    Article  Google Scholar 

  67. ETP4HPC Strategic Research Agenda. http://www.etp4hpc.eu/

  68. International technology roadmap for semiconductors 2011. Interconnect

  69. Pasricha S, Dutt N (2008) Trends in emerging on-chip interconnect technologies. IPSJ Trans Syst LSI Design Methodol 1:2–7

    Article  Google Scholar 

  70. Carloni LP et al (2009) Networks-on-chip in emerging interconnect paradigms: advantages and challenges. In: Proceedings of 3rd ACM/IEEE international symposium networks-on-chip, pp 93–102

  71. Kachris Christoforos, Tomkos Ioannis (2012) A survey on optical interconnects for data centers. IEEE Commun Surv Tutor 14(4):1021–1036

    Article  Google Scholar 

  72. Kirman N et al (2006) Leveraging optical technology in future bus-based chip multiprocessors. In: MICRO

  73. Batten C et al (2008) Building manycore processor-to-dram networks with monolithic silicon photonics. In: Hot interconnects, pp 21–30

  74. Pan Y, Kumar P, Kim J, Memik G, Zhang Y, Choudhary AN (2009) Firefly: illuminating future network-on-chip with nanophotonics. In: ISCA, pp 429–440

  75. Vantrease D, Binkert N. L, Schreiber R, Lipasti MH (2009) Light speed arbitration and flow control for nanophotonic interconnects. In: MICRO’09, pp 304–315

  76. Kurian G, Miller JE, Psota J, Eastep J, Liu J, Michel J, Kimerling LC, Agarwal A (2010) ATAC: a 1000-core cache-coherent processor with on-chip optical network. In: PACT’10, pp 477–488

  77. Vantrease D et al (2008) Corona: system implications of emerging nanophotonic technology. In: ISCA

  78. Cianchetti MJ, Kerekes JC, Albonesi DH (June 2009) Phastlane: a rapid transit optical routing network. SIGARCH Comput. Archit. News 37:441–450

  79. Pan Y, Kim J, Memik G (2010) Flexishare: channel sharing for an energy-efficient nanophotonic crossbar. In: HPCA, pp 1–12

  80. Shacham A, Lee BG, Biberman A, Bergman K, Carloni LP (2007) Photonic NoC for DMA communications in chip multiprocessors. In: Hot interconnects

  81. Chan J, Hendry G, Biberman A, Bergman K, Carloni LP (2010) Phoenixsim: a simulator for physical-layer analysis of chip-scale photonic interconnection networks. DATE

  82. Hendry G et al (2009) Analysis of photonic networks for a chip multi-processor using scientific applications, DATE, 2010. In: Proceedings of the third international symposium on networks-on-chip (NOCS)

  83. Ortn Obn M, Ramini L, Tatanguem Fankem H, Vinals-Yufera V, Bertozzi D (2014) A complete electronic network interface architecture for global contention-free communication over emerging optical networks-on-chip. In: Proceedings of GLSVLSI symposium

  84. Ramini L, Grani P, Tatenguem Fankem H, Ghiribaldi A, Bartolini S, Bertozzi D (2014) Assessing the energy break-even point between an optical NoC architecture and an aggressive electronic baseline. In: Proceedings of DATE

  85. Kurian G et al (2012) Cross-layer energy and performance evaluation of a nanophotonic manycore processor system using real application workloads. In: IEEE 26th international parallel & distributed processing symposium (IPDPS), pp 1117–1130

  86. Chang MF et al (2008) CMP network-on-chip overlaid with multi-band RF-interconnect. In: Proceedings of IEEE international symposium on high-performance computer architecture (HPCA), Feb 16–20, pp 191–202

  87. Zhao D, Wang Y (2008) SD-MAC: design and synthesis of A hardware-efficient collision-free QoS-aware MAC protocol for wireless network-on-chip. IEEE Trans Comput 57(9):1230–1245

    Article  MathSciNet  Google Scholar 

  88. Lee SB et al (2009) A scalable micro wireless interconnect structure for CMPs. In: Proceedings of ACM annual international conference on mobile computing and networking (MobiCom), pp 20–25

  89. Kempa K et al (2007) Carbon nanotubes as optical antennae. Adv Mater 19:421–426

    Article  Google Scholar 

  90. Deb S, Ganguly A, Pande PP, Belzer B, Heo D (2012) Wireless NoC as interconnection backbone for multicore chips: promises and challenges. IEEE J Emerg Selected Topics Circuits Syst 2(2):228–239

  91. Weiss SM, Molinari M, Fauchet PM (2003) Temperature stability for silicon-based photonic band-gap structures. Appl Phys Lett 83(10):1980–1982

    Article  Google Scholar 

  92. Yu X et al (2011) A wideband body-enabled millimeter-wave transceiver for wireless network-on-chip. In: Proceedings of the 54th IEEE midwest symposium on circuits and system, pp 1–4

  93. Lee SB et al (2009) A scalable micro wireless interconnect structure for CMPs. In: Proceedings of the ACM annual international conference on mobile computing and network. (MobiCom), pp 20–25

  94. Ganguly A et al (2011) Scalable hybrid wireless network-on-chip architectures for multi-core systems. IEEE Trans. Comput 60(10):1485–1502

  95. Batten C, Joshi A, Stojanovic V, Asanovic K (2012) Designing chip-level nanophotonic interconnection networks. IEEE J Emerg Selected Topics Circuits Syst 2(2):137–153

  96. Leu JC, Stojanovic V, (2011) Injection-locked clock receiver for monolithic optical link in 45nm. Asian solid-state circuits conference, Jeju, Korea, pp 149–152

  97. Ramini L, Grani P, Bartolini S, Bertozzi D (2013) Contrasting wavelength-routed optical NoC topologies for power-efficient 3D-stacked multicore processors using physical-layer analysis. In: DATE, pp 1589–1594

  98. Le Beux S, Trajkovic J, O’Connor I, Nicolescu G (2011) Layout guidelines for 3D architectures including optical ring network-on-chip (ORNoC). VLSI-SoC, pp 242–247

  99. DiTomaso D et al (2011) iWise: inter-routerwireless scalable express channels for network-on-chips (NoCs) architecture. In: Proceedings of the annual symposium on high performance interconnects, pp 11–18

  100. Deb S et al (2010) Enhancing performance of network-on-Chip architectures with millimeter-wave wireless interconnects. In: Proceedings of the IEEE international conference on ASAP, pp 73–80

  101. Zhao D et al (2011) Design of multi-channel wireless NoC to improve on-chip communication capacity. In: Proceedings of the 5th ACM/IEEE international symposium on networks-on-chip, pp 177–184

  102. Wang C et al (2011) A wireless network-on-chip design for multicore platforms. In: Proceedings of the 19th international euromicro conference on parallel, distributed network-based process., pp 409–416

  103. Chang K et al (2012) Performance evaluation and design trade-offs for wireless network-on-chip architectures. ACM J Emerg Technol Comput Syst 8:1–23:25

  104. Deb S et al (2012) Design of an efficient NoC architecture using millimeter-wave wireless links. In: Proceedings of the IEEE international symposium on quality electron. Design (ISQED), pp 165–172

  105. Ganguly A et al (2011) Complex network inspired fault-tolerant NoC architectures with wireless links. In: Proceedings of the 5th ACM/IEEE international symposium on networks-on-chip, pp 1485–1502

  106. Ganguly A et al (2011) A unified error control coding scheme to enhance the reliability of a hybrid wireless Network-on-Chip. In: Proceedings of the IEEE international symposium defect fault tolerance VLSI nanotechnology system, pp 277–285

  107. Boos A, Ramini L, Schlichtmann U, Bertozzi D (2013) PROTON: an automatic place-and-route tool for optical Networks-on-Chip. ICCAD, pp 138–145

  108. Deb S, Chang K, Ganguly A, Pande P (2010) Comparative performance evaluation of wireless and optical NoC architectures. SoCC 487–492

  109. Krzanich B CES 2014 Keynote. http://www.intel.com/content/www/us/en/events/intel-ces-keynote.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Bertozzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertozzi, D., Dimitrakopoulos, G., Flich, J. et al. The fast evolving landscape of on-chip communication. Des Autom Embed Syst 19, 59–76 (2015). https://doi.org/10.1007/s10617-014-9137-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10617-014-9137-6

Keywords

Navigation