Abstract
We analyze a reliable and efficient max-norm a posteriori error estimator for a control-constrained, linear–quadratic optimal control problem. The estimator yields optimal experimental rates of convergence within an adaptive loop.
Similar content being viewed by others
References
Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley-Interscience, New York (2000)
Allendes, A., Otárola, E., Rankin, R.: A posteriori error estimation for a PDE-constrained optimization problem involving the generalized Oseen equations. SIAM J. Sci. Comput. 40(4), A2200–A2233 (2018)
Allendes, A., Otárola, E., Rankin, R., Salgado, A.J.: An a posteriori error analysis for an optimal control problem with point sources. ESAIM Math. Model. Numer. Anal. 52(5), 1617–1650 (2018)
Apel, T., Rösch, A.A., Sirch, D.: \({L}^\infty \)-error estimates on graded meshes with application to optimal control. SIAM J. Control Optim. 48(3), 1771–1796 (2009)
Becker, R., Kapp, H., Rannacher, R.: Adaptive finite element methods for optimal control of partial differential equations: basic concept. SIAM J. Control Optim. 39(1), 113–132 (2000). (electronic)
Camacho, F., Demlow, A.: \(L_2\) and pointwise a posteriori error estimates for FEM for elliptic PDEs on surfaces. IMA J. Numer. Anal. 35(3), 1199–1227 (2015)
Dari, E., Durán, R.G., Padra, C.: Maximum norm error estimators for three-dimensional elliptic problems. SIAM J. Numer. Anal. 37(2), 683–700 (2000)
Dauge, M.: Neumann and mixed problems on curvilinear polyhedra. Integral Eqs. Oper. Theory 15(2), 227–261 (1992)
Demlow, A., Georgoulis, E.H.: Pointwise a posteriori error control for discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 50(5), 2159–2181 (2012)
Demlow, A., Kopteva, N.: Maximum-norm a posteriori error estimates for singularly perturbed elliptic reaction-diffusion problems. Numer. Math. 133(4), 707–742 (2016)
Demlow, A., Larsson, S.: Local pointwise a posteriori gradient error bounds for the Stokes equations. Math. Comp. 82(282), 625–649 (2013)
Demlow, A., Leykekhman, D., Schatz, A.H., Wahlbin, L.B.: Best approximation property in the \(W^{1}_{\infty }\) norm for finite element methods on graded meshes. Math. Comp. 81(278), 743–764 (2012)
Eriksson, K.: An adaptive finite element method with efficient maximum norm error control for elliptic problems. Math. Models Methods Appl. Sci. 4(3), 313–329 (1994)
Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Springer, New York (2004)
Frehse, J., Rannacher, R.: Eine \(L^{1}\)-Fehlerabschätzung für diskrete Grundlösungen in der Methode der finiten Elemente pp. 92–114. Bonn. Math. Schrift., No. 89 (1976)
Grisvard, P.: Elliptic problems in nonsmooth domains, Classics in Applied Mathematics, vol. 69. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2011). Reprint of the 1985 original [ MR0775683], With a foreword by Susanne C. Brenner
Guzmán, J., Leykekhman, D., Rossmann, J., Schatz, A.: Hölder estimates for Green’s functions on convex polyhedral domains and their applications to finite element methods. Numer. Math. 112(2), 221–243 (2009)
Hintermüller, M., Hoppe, R.: Goal-oriented adaptivity in control constrained optimal control of partial differential equations. SIAM J. Control Optim. 47(4), 1721–1743 (2008)
Hintermüller, M., Hoppe, R., Iliash, Y., Kieweg, M.: An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints. ESAIM: Control Optim. Calc. of Var. 14, 540–560 (2008)
Jerison, D., Kenig, C.E.: The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130(1), 161–219 (1995)
Jerison, D.S., Kenig, C.E.: The Neumann problem on Lipschitz domains. Bull. Am. Math. Soc. (N.S.) 4(2), 203–207 (1981)
Kohls, K., Rösch, A., Siebert, K.: A posteriori error analysis of optimal control problems with control constraints. SIAM J. Control Optim. 52(3), 1832–1861 (2014)
Leykekhman, D., Vexler, B.: Finite element pointwise results on convex polyhedral domains. SIAM J. Numer. Anal. 54(2), 561–587 (2016)
Li, R., Liu, W., Yan, N.: A posteriori error estimates of recovery type for distributed convex optimal control problems. J. Sci. Comput. 33(2), 155–182 (2007)
Lions, J.L.: Optimal control of systems governed by partial differential equations. Translated from the French by S. K. Mitter. Die Grundlehren der mathematischen Wissenschaften, Band, vol. 170. Springer, New York (1971)
Liu, W., Yan, N.: A posteriori error estimates for distributed convex optimal control problems. Adv. Comput. Math. 15(1–4), 285–309 (2001)
Maz’ya, V., Rossmann, J.: Elliptic equations in polyhedral domains, Mathematical Surveys and Monographs, vol. 162. American Mathematical Society, Providence, RI (2010)
Meyer, C., Rademacher, A., Wollner, W.: Adaptive optimal control of the obstacle problem. SIAM J. Sci. Comput. 37(2), 918–945 (2015)
Meyer, C., Rösch, A.: \({L}^{\infty }\)-estimates for approximated optimal control problems. SIAM J. Control Optim. 44(5), 1636–1649 (2005)
Natterer, F.: über die punktweise Konvergenz finiter Elemente. Numer. Math. 25(1), 67–77 (1975/1976)
Nitsche, J.: Lineare Spline-Funktionen und die Methoden von Ritz für elliptische Randwertprobleme. Arch. Rational Mech. Anal. 36, 348–355 (1970)
Nitsche, J.: \(L_{\infty }\)-convergence of finite element approximation. In: Journées “Éléments Finis” (Rennes, 1975), p. 18. Univ. Rennes, Rennes (1975)
Nochetto, R.: Pointwise a posteriori error estimates for elliptic problems on highly graded meshes. Math. Comp. 64(209), 1–22 (1995)
Nochetto, R.H., Schmidt, A., Siebert, K.G., Veeser, A.: Pointwise a posteriori error estimates for monotone semi-linear equations. Numer. Math. 104(4), 515–538 (2006)
Nochetto, R.H., Siebert, K.G., Veeser, A.: Pointwise a posteriori error control for elliptic obstacle problems. Numer. Math. 95(1), 163–195 (2003)
Nochetto, R.H., Siebert, K.G., Veeser, A.: Theory of adaptive finite element methods: an introduction. In: Multiscale, nonlinear and adaptive approximation, pp. 409–542. Springer, Berlin (2009)
Nochetto, R.H., Veeser, A.: Primer of adaptive finite element methods. In: Multiscale and adaptivity: modeling, numerics and applications, Lecture Notes in Math., vol. 2040, pp. 125–225. Springer, Heidelberg (2012)
Rannacher, R., Scott, R.: Some optimal error estimates for piecewise linear finite element approximations. Math. Comp. 38(158), 437–445 (1982)
Rösch, A., Siebert, K.G., Steinig, S.: Reliable a posteriori error estimation for state-constrained optimal control. Comput. Optim. Appl. 68(1), 121–162 (2017)
Savaré, G.: Regularity results for elliptic equations in Lipschitz domains. J. Funct. Anal. 152(1), 176–201 (1998)
Schatz, A., Wahlbin, L.: Interior maximum norm estimates for finite element methods. Math. Comp. 31(138), 414–442 (1977)
Schatz, A., Wahlbin, L.: Maximum norm estimates in the finite element method on plane polygonal domains. I. Math. Comp. 32(141), 73–109 (1978)
Schatz, A., Wahlbin, L.: Maximum norm estimates in the finite element method on plane polygonal domains. II. Refinements. Math. Comp. 33(146), 465–492 (1979)
Schatz, A.H., Wahlbin, L.B.: On the quasi-optimality in \(L_{\infty }\) of the \(\dot{H}^{1}\)-projection into finite element spaces. Math. Comp. 38(157), 1–22 (1982)
Scott, R.: Optimal \(L^{\infty }\) estimates for the finite element method on irregular meshes. Math. Comp. 30(136), 681–697 (1976)
Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods, and Applications. Graduate Studies in Mathematics. American Mathematical Society (2010)
Verfürth, R.: A Posteriori Error Sstimation Techniques for Finite Element Methods. Oxford University Press, Oxford (2013)
Acknowledgements
E. Otárola was supported in part by CONICYT through FONDECYT project 11180193. A. J. Salgado was supported in part by NSF Grant DMS-1418784. R. Rankin was supported in part by Universidad de Chile through BASAL PFB03 CMM project. The authors would like to thank Alejandro Allendes.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Otárola, E., Rankin, R. & Salgado, A.J. Maximum–norm a posteriori error estimates for an optimal control problem. Comput Optim Appl 73, 997–1017 (2019). https://doi.org/10.1007/s10589-019-00090-0
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-019-00090-0
Keywords
- Linear–quadratic optimal control problem
- Finite element methods
- A posteriori error analysis
- Maximum–norm